Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:35:43.811Z Has data issue: false hasContentIssue false

Optical Properties of Carbon Doped Cubic GaN Epilayers Grown on GaAs (001) Substrate by Molecular Beam Epitaxy

Published online by Cambridge University Press:  21 March 2011

D. J. As
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100, D-33095 Paderborn, Germany, [email protected]
U. Köhler
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100, D-33095 Paderborn, Germany, [email protected]
K. Lischka
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100, D-33095 Paderborn, Germany, [email protected]
Get access

Abstract

The optical properties of Carbon doped cubic GaN epilayers have been investigated by temperature and intensity dependent photoluminescence measurements. RF-plasma assisted molecular beam epitaxy equipped with an e-beam-evaporation source for carbon doping is used to grow the cubic GaN layers on GaAs (001) substrates. With increasing Carbon flux a new photoluminescence line at 3.08 eV appeared at 2K. This line is attributed to a donor acceptor transistion, which involves the shallow CN acceptor. From the spectral position the binding energy of the C acceptor is estimated to be about EC = 0.215 eV. Our experiments demonstrate that C indeed introduces a shallow acceptor in cubic GaN with an acceptor binding energy, which is about 15 meV lower than that observed for the Mg acceptor in cubic GaN. However, at high C fluxes a deep red luminescence band appeared at 2.1 eV, indicating compensation effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morkoc, H., in “Nitride Semiconductors and Devices”, (Springer, 1999).Google Scholar
2. Kaufmann, U., Schlotter, P., Obloh, H., Köhler, K., and Maier, M., Phys. Rev. B 62 (16)), 10867 (2000).Google Scholar
3. Guha, S., Bojarczuk, N.A., and Cardone, F., Appl. Phys. Lett. 71 (12)), 1685 (1997).Google Scholar
4. Ya, B. Ber, Yu Kudriavtsev, A., Merkulov, A.V., Novikov, S.V., Lacklison, D.E., Orton, J.W., Cheng, T.S., and Foxon, C.T., Semicond. Sci. Technol. 13 (1)), 71 (1998).Google Scholar
5. Schikora, D., Hankeln, M., As, D.J., Lischka, K., Litz, T., Waag, A., Buhrow, T., Henneberger, F., Phys. Rev. B 54 (12), R8381 (1996).Google Scholar
6. As, D.J., Köhler, U., Journal of Physics: Condensed Matter 13 (40)), 8923 (2001).Google Scholar
7. Shimizu, S., Sonoda, S., Proc. Int. Workshop on Nitride Semic., IPAP Conf. series 1, 740 (2001).Google Scholar
8. Zhang, R. and Kuech, T.F., Appl. Phys. Lett. 72 (13)), 1611 (1998).Google Scholar
9. Birkle, U., Fehrer, M., Kirchner, V., Einfeldt, S., Hommel, D., Strauf, S., Michler, P., Gutowski, J., MRS Internet J. Nitride Semic. Res. 4S1, G5.6 (1999).Google Scholar
10. Abernathy, C.R., MacKenzie, J.D., Pearton, S.J., Hobson, W.S., Appl. Phys. Lett. 66 (15)), 1969 (1995).Google Scholar
11. Look, D.C., in “Electrical Characterization of GaAs Materials and Devices”, (Wiley, 1989), p. 60.Google Scholar
12. Songprakob, W., Zallen, R., Liu, W.K. and Bacher, K.L., Phys. Rev. B 62 (7)), 4501 (2000).Google Scholar
13. As, D.J., Schmilgus, F., Wang, C., Schöttker, B., Schikora, D., and Lischka, K., Appl. Phys. Lett. 70 (10)), 1311 (1997).Google Scholar
14. As, D.J., Simonsmeier, T., Schöttker, B., Frey, T., Schikora, D., Kriegseis, W., Burkhart, W., Meyer, B.K., Appl. Phys. Lett. 73 (13)), 1835 (1998).Google Scholar
15. Fischer, S., Wetzel, C., Haller, E.E., Meyer, B.K., Appl. Phys. Lett. 67 (9)), 1298 (1995).Google Scholar
16. Ramírez-Flores, G., Navarro-Contreras, H., Lastras-Martínez, A, Powell, R.C., Greene, J.E., Phys. Rev. B 50 (12)), 8433 (1994).Google Scholar
17. Bebb, H.B. and Williams, E.W., in “Semiconductors and Semimetals”, edited by Willardson, R.K. and Beer, A.C., Vol 8., (Academic Press, 1972) p. 181.Google Scholar
18. Schmidt, T., Lischka, K., Zulehner, W., Phys. Rev. B 45 (16)), 8989 (1992).Google Scholar
19. As, D.J., Köhler, U., Lübbers, M., Mimkes, J. and Lischka, K., phys. stat. sol.(a) 188, 699 (2001).Google Scholar
20. Cheong, B., Chang, K.J., Phys. Rev. B 49 (24)), 17436 (1994).Google Scholar
21. Wagner, J., Newman, R.C., Davidson, B.R., Westwater, S.P., Bullough, T.J., Joyce, T.B., Latham, C.D., Jones, R., Öberg, S., Phys. Rev. Lett. 78 (1)), 74 (1997).Google Scholar
22. Gelmont, B.L. and Dýakonov, M.I., Sov. Phys. Semicond. 5 (11)), 1905 (1972).Google Scholar
23. Orton, J.W., Semicond. Sci. Technol. 10, 101 (1995).Google Scholar
24. Siegle, H., Eckey, L., Hoffmann, A., Thomsen, C., Meyer, B.K., Schikora, D., and Lischka, K., Solid State Commun. 96 (12)), 943 (1995).Google Scholar