No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
This paper investigates the optical properties of bulk and epitaxial ZnO layers. High quality undoped and doped bulk ZnO crystals have been produced by melt growth techniques in addition to ZnO thin films grown by Metalorganic Chemical Vapor Deposition (MOCVD) on silicon, sapphire and the bulk ZnO substrates. This work focuses on investigating the suitability of bulk and epitaxial ZnO for waveguide applications using various spectroscopic techniques. The photoluminescence showed the dominance of strong and narrow band due to the band edge emissions for undoped ZnO. Ultraviolet-visible transmission data revealed the variation of the bandgap with different doping elements. Raman spectra showed a narrow and strong peak, corresponding to the E2 mode at 438 cm-1, characteristic of the ZnO crystallinity. A broad 2LO peak appeared near 1150 cm-1 due to the coupling between LO phonons and free carriers. A clear variation in refractive index with doping was observed by spectroscopic ellipsometery suggesting that ZnO could be used for waveguide applications.