Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T17:40:59.977Z Has data issue: false hasContentIssue false

Optical Probe Thermometry Using Optically Trapped Erbium Oxide Nanoparticles

Published online by Cambridge University Press:  07 August 2015

Samuel C. Johnson
Affiliation:
Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701
Susil Baral
Affiliation:
Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701
Arwa A. Alaulamie
Affiliation:
Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701
Hugh H. Richardson
Affiliation:
Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701
Get access

Abstract

A new thermal imaging technique is characterized that uses an optically trapped erbium oxide nanoparticle cluster of approximately 150 nm. This technique can measure absolute temperature and has an imaging spatial resolution of the trapped particle. Scanning optical probe thermometry has been used to thermally image a cluster of gold nanowires that were excited with the trapping laser. Following a deconvolution of the measured thermal profile, a point spread function of the imaging technique has been determined to be a Gaussian with a FWHM of 165 nm. This width is a function of the clustering of Er2O3 nanoparticles used to image the nanowire. Optical probe thermometry has further been used to measure the temperature of nucleation events where a dichotomy of temperature for nucleated water occurs from degassed water and native water. Degassed water has been measured to nucleate at 555K confirming water adjacent to the gold nanoparticle superheats to the spinodal decomposition temperature before nucleating into a water vapor bubble. Following this event, the temperature inside the vapor bubble rises to the melting point of the gold nanoparticle, 1300 K which is followed by temperature stabilization. The rapid and significant temperature increase is attributed to the loss of a thermal dissipation pathway, to the surrounding water, previously available to the gold nanoparticle due to the insulator nature of the growing vapor envelope around the gold nanoparticle.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Losego, M. D.; Cahill, D. G. Nature Materials 2013, 12, (5), 382384.CrossRefGoogle Scholar
Losego, M. D.; Grady, M. E.; Sottos, N. R.; Cahill, D. G.; Braun, P. V. Nature Materials 2012, 11, (6), 502506.CrossRefGoogle Scholar
Ong, W.-L.; Rupich, S. M.; Talapin, D. V.; McGaughey, A. J. H.; Malen, J. A. Nature Materials 2013, 12, (5), 410415.CrossRefGoogle Scholar
Aggarwal, R. L.; Farrar, L. W.; Saikin, S. K. J. Phys. Chem. C 2012, 116, (31), 1665616659.CrossRefGoogle Scholar
Baffou, G.; Quidant, R. Laser & Photonics Reviews 2013, 7, (2), 171187.CrossRefGoogle Scholar
Chen, X.; Chen, Y. T.; Yan, M.; Qiu, M. ACS Nano 2012, 6, (3), 25502557.CrossRefGoogle Scholar
Croissant, J.; Zink, J. I. J. Am. Chem. Soc. 2012, 134, (18), 76287631.CrossRefGoogle Scholar
Fang, C.; Shao, L.; Zhao, Y.; Wang, J.; Wu, H. Advanced Materials 2012, 24, (1), 94-+.Google Scholar
Garnett, E. C.; Cai, W.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Christoforo, M. G.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Nature Materials 2012, 11, (3), 241249.CrossRefGoogle Scholar
Ni, W.; Ba, H.; Lutich, A. A.; Jaeckel, F.; Feldmann, J. Nano Lett. 2012, 12, (9), 46474650.CrossRefGoogle Scholar
Xiong, Y.; Long, R.; Liu, D.; Zhong, X.; Wang, C.; Li, Z.-Y.; Xie, Y. Nanoscale 2012, 4, (15), 44164420.CrossRefGoogle Scholar
Zillohu, A. U.; Abdelaziz, R.; Hedayati, M. K.; Emmler, T.; Homaeigohar, S.; Elbahri, M. J. Phys. Chem. C 2012, 116, (32), 1720417209.CrossRefGoogle Scholar
Vazquez-Vazquez, C.; Vaz, B.; Giannini, V.; Perez-Lorenzo, M.; Alvarez-Puebla, R. A.; Correa-Duarte, M. A. J. Am. Chem. Soc. 2013, 135, (37), 1361613619.CrossRefGoogle Scholar
Chong, X.; Jiang, N.; Zhang, Z.; Roy, S.; Gord, J. R. Journal Of Nanoparticle Research 2013, 15, (6).Google Scholar
Fang, Z.; Zhen, Y.-R.; Neumann, O.; Polman, A.; Javier Garcia de Abajo, F.; Nordlander, P.; Halas, N. J. Nano Lett. 2013, 13, (4), 17361742.CrossRefGoogle Scholar
Haas, K. M.; Lear, B. J. Nanoscale 2013, 5, (12), 52475251.CrossRefGoogle Scholar
Wang, F.; Li, C.; Chen, H.; Jiang, R.; Sun, L.-D.; Li, Q.; Wang, J.; Yu, J. C.; Yan, C.-H. J. Am. Chem. Soc. 2013, 135, (15), 55885601.CrossRefGoogle Scholar
Han, H.; Lee, J. Y.; Lu, X. Chemical Communications 2013, 49, (55), 61226124.CrossRefGoogle Scholar
Fedoruk, M.; Meixner, M.; Carretero-Palacios, S.; Lohmueller, T.; Feldmann, J. ACS Nano 2013, 7, (9), 76487653.CrossRefGoogle Scholar
Qiu, J.; Wu, Y.-C.; Wang, Y.-C.; Engelhard, M. H.; McElwee-White, L.; Wei, W. D. Journal of the American Chemical Society 2013, 135, (1), 3841.CrossRefGoogle Scholar
Huschka, R.; Zuloaga, J.; Knight, M. W.; Brown, L. V.; Nordlander, P.; Halas, N. J. J. Am. Chem. Soc. 2011, 133, (31), 1224712255.CrossRefGoogle Scholar
Alessandri, I.; Ferroni, M.; Depero, L. E. J. Phys. Chem. C 2011, 115, (12), 51745180.CrossRefGoogle Scholar
Fasciani, C.; Bueno Alejo, C. J.; Grenier, M.; Netto-Ferreira, J. C.; Scaiano, J. C. Organic Letters 2011, 13, (2), 204207.CrossRefGoogle Scholar
Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zheng, N. Nature Nanotechnology 2011, 6, (1), 2832.CrossRefGoogle Scholar
Tsuboi, Y.; Shimizu, R.; Shoji, T.; Kitamura, N.; Takase, M.; Murakoshi, K. Journal Of Photochemistry And Photobiology A-Chemistry 2011, 221, (2-3), 250255.CrossRefGoogle Scholar
Walker, J. M.; Gou, L.; Bhattacharyya, S.; Lindahl, S. E.; Zaleski, J. M. Chem. Mater. 2011, 23, (23), 52755281.CrossRefGoogle Scholar
Skirtach, A. G.; Javier, A. M.; Kreft, O.; Kohler, K.; Alberola, A. P.; Mohwald, H.; Parak, W. J.; Sukhorukov, G. B. Angew. Chem. Int. Edit. 2006, 45, (28), 46124617.CrossRefGoogle Scholar
Stehr, J.; Hrelescu, C.; Sperling, R. A.; Raschke, G.; Wunderlich, M.; Nichtl, A.; Heindl, D.; Kurzinger, K.; Parak, W. J.; Klar, T. A.; Feldmann, J. Nano Lett. 2008, 8, (2), 619623.CrossRefGoogle Scholar
Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, (23), 1354913554.CrossRefGoogle Scholar
Urban, A. S.; Fedoruk, M.; Horton, M. R.; Radler, J.; Stefani, F. D.; Feldmann, J. Nano Lett. 2009, 9, (8), 29032908.CrossRefGoogle Scholar
Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Lasers In Medical Science 2008, 23, (3), 217228.CrossRefGoogle Scholar
Dickerson, E. B.; Dreaden, E. C.; Huang, X. H.; El-Sayed, I. H.; Chu, H. H.; Pushpanketh, S.; McDonald, J. F.; El-Sayed, M. A. Cancer Letters 2008, 269, (1), 5766.CrossRefGoogle Scholar
El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Cancer Letters 2006, 239, (1), 129135.CrossRefGoogle Scholar
Jain, P. K.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, (7), 24262433.CrossRefGoogle Scholar
Boyer, D.; Tamarat, P.; Maali, A.; Lounis, B.; Orrit, M. Science 2002, 297, (5584), 11601163.CrossRefGoogle Scholar
Cognet, L.; Tardin, C.; Boyer, D.; Choquet, D.; Tamarat, P.; Lounis, B. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, (20), 1135011355.CrossRefGoogle Scholar
Berciaud, S.; Cognet, L.; Blab, G. A.; Lounis, B. Phys. Rev. Lett. 2004, 93, (25).CrossRefGoogle Scholar
Gaiduk, A.; Yorulmaz, M.; Ruijgrok, P. V.; Orrit, M. Science 2010, 330, (6002), 353356.CrossRefGoogle Scholar
Baffou, G.; Kreuzer, M. P.; Kulzer, F.; Quidant, R. Optics Express 2009, 17, (5), 32913298.CrossRefGoogle Scholar
Baffou, G.; Bon, P.; Savatier, J.; Polleux, J.; Zhu, M.; Merlin, M.; Rigneault, H.; Monneret, S. Acs Nano 2012, 6, (3), 24522458.CrossRefGoogle Scholar
De Wilde, Y.; Formanek, F.; Carminati, R.; Gralak, B.; Lemoine, P.-A.; Joulain, K.; Mulet, J.-P.; Chen, Y.; Greffet, J.-J. Nature 2006, 444, (7120), 740743.CrossRefGoogle Scholar
Carlson, M. T.; Khan, A.; Richardson, H. H. Nano Lett. 2011, 11, (3), 10611069.CrossRefGoogle Scholar
Pollock, H. M.; Hammiche, A. Journal Of Physics D-Applied Physics 2001, 34, (9), R23R53.CrossRefGoogle Scholar
Sadat, S.; Tan, A.; Chua, Y. J.; Reddy, P. Nano Lett. 2010, 10, (7), 26132617.CrossRefGoogle Scholar
Loew, P.; Kim, B.; Takama, N.; Bergaud, C. Small 2008, 4, (7), 908914.CrossRefGoogle Scholar
Vetrone, F.; Naccache, R.; Zamarron, A.; Juarranz de la Fuente, A.; Sanz-Rodriguez, F.; Martinez Maestro, L.; Martin Rodriguez, E.; Jaque, D.; Garcia Sole, J.; Capobianco, J. A. ACS Nano 2010, 4, (6), 32543258.CrossRefGoogle Scholar
Li, S.; Zhang, K.; Yang, J. M.; Lin, L. W.; Yang, H. Nano Lett. 2007, 7, (10), 31023105.CrossRefGoogle Scholar
Van de Broek, B.; Grandjean, D.; Trekker, J.; Ye, J.; Verstreken, K.; Maes, G.; Borghs, G.; Nikitenko, S.; Lagae, L.; Bartic, C.; Temst, K.; Van Bael, M. J. Small 2011, 7, (17), 24982506.Google Scholar
Setoura, K.; Werner, D.; Hashimoto, S. J. Phys. Chem. C 2012, 116, (29), 1545815466.CrossRefGoogle Scholar
Bendix, P. M.; Nader, S.; Reihani, S.; Oddershede, L. B. ACS Nano 2010, 4, (4), 22562262.CrossRefGoogle Scholar
Lee, J.; Govorov, A. O.; Kotov, N. A. Angew. Chem. Int. Edit. 2005, 44, (45), 74397442.CrossRefGoogle Scholar
Govorov, A. O.; Zhang, W.; Skeini, T.; Richardson, H.; Lee, J.; Kotov, N. A. Nanoscale Res. Lett. 2006, 1, (1), 8490.CrossRefGoogle Scholar
Garter, M. J.; Steckl, A. J. IEEE Trans. Elect. Dev. 2002, 49, (1), 4854.CrossRefGoogle Scholar
Sasikumar, K.; Keblinski, P. J. Chem. Phys. 2014, 141, (23).CrossRefGoogle Scholar
Carlson, M. T.; Green, A. J.; Richardson, H. H. Nano Lett. 2012, 12, (3), 15341537.CrossRefGoogle Scholar
Govorov, A. O.; Richardson, H. H. Nano Today 2007, 2, (1), 3038.CrossRefGoogle Scholar
Baral, S.; Green, A. J.; Livshits, M. Y.; Govorov, A. O.; Richardson, H. H. ACS Nano 2014, 8, (2), 14391448.CrossRefGoogle Scholar
Kotaidis, V.; Plech, A. Appl. Phys. Lett. 2005, 87, (21).CrossRefGoogle Scholar
Debasu, M. L.; Ananias, D.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Rocha, J.; Carlos, L. D. Advanced Materials 2013, 25, (35), 48684874.CrossRefGoogle Scholar