Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:04:19.990Z Has data issue: false hasContentIssue false

Optical Nmr From Single Quantum Dots

Published online by Cambridge University Press:  15 February 2011

S. W. Brown
Affiliation:
Naval Research Laboratory, Washington, DC 20375.
T. A. Kennedy
Affiliation:
Naval Research Laboratory, Washington, DC 20375.
D. Gammon
Affiliation:
Naval Research Laboratory, Washington, DC 20375.
Get access

Abstract

We have observed nuclear magnetic resonance (NMR) signatures from constituent Ga and As nuclei in single GaAs quantum dots formed by interface fluctuations in GaAs/AlGaAs quantum wells. Orientation of the nuclear spin system by optical pumping causes an Overhauser shift in the excitonic energy levels proportional to the degree of nuclear orientation. NMR was detected by monitoring changes in the combined Overhauser plus Zeeman splitting of an exciton localized in a single quantum dot as the RF frequency was swept through a nuclear resonance. The NMR signals originate from ∼105 nuclei in the quantum dot — (20 nm)3 volume - representing an increase in sensitivity of five orders of magnitude over previous optical NMR measurements and thirteen orders of magnitude over conventional NMR. The data were fit to Lorentzian lineshapes, giving 75As linewidths on the order of 20 kHz.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S., and Park, D., Science 273, 87 (1996); Phys. Rev. Lett. 76, 3005 (1996).Google Scholar
[2] Empedocles, S. A., Norris, D. J., and Bawendi, M. G., Phys. Rev. Lett. 77, 3873 (1996).Google Scholar
[3] Thayer, A. M., Steigerwald, M. L., Duncan, T. M., and Douglass, D. C., Phys. Rev. Lett. 60, 2673 (1988).Google Scholar
[4] Potter, L. D., Guzelian, A. A., Alivisatos, A. P., and Wu, Y., J. Chem. Phys. 103, 4834 (1995).Google Scholar
[5] Paget, D., Lampel, G., Sapoval, B., and Safarov, V. I., Phys. Rev. B 15, 5780 (1977).Google Scholar
[6] Gammon, D., Shanabrook, B. V., and Katzer, D. S., Phys. Rev. Lett. 67, 1547 (1991).Google Scholar
[7] Gammon, D., Snow, E. S., and Katzer, D. S., Appl. Phys. Lett. 67, 2391 (1995).Google Scholar
[8] Brown, S. W., Kennedy, T. A., Gammon, D., and Snow, E. S., Phys. Rev. B (in press).Google Scholar
[9] Shulman, R. G., Wyluda, B. J., and Hrostowski, H. J., Phys. Rev. 109, 808 (1958).Google Scholar
[10] Brown, S. W., Gammon, D. and Kennedy, T. A., in preparation.Google Scholar
[11] Wrachtrup, J., Borczyskowski, C. v., Bernard, J., Orrit, M., and Brown, R., Phys. Rev. Lett. 71, 3565 (1993).Google Scholar
[12] Koehler, J., Brouwer, A. C. J., Groenen, E. J. J., Schmidt, J., Science 268, 1458 (1995).Google Scholar