Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-12T17:18:36.785Z Has data issue: false hasContentIssue false

Optical Microanalysis of Small Semiconductor Structures*

Published online by Cambridge University Press:  15 February 2011

D. V. Murphy
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, Massachusetts 02173
S. R. J. Brueck
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, Massachusetts 02173
Get access

Abstract

Raman spectroscopy is a powerful tool for evaluating semiconductor crystal characteristics with a diffraction–limited spatial resolution of approximately 0.5 μm, comparable to device structure dimensions. Examples are presented of the use of Raman scattering to measure stress variations across Sion-insulator and Si-on-sapphire stripes with dimensions down to 2 μm and, to probe the spatial variation in the effectiveness of annealing of a Si layer deposited over metal device structures. Detailed measurements of the variation in the Raman spectra of thin crystalline Si films, with thicknesses down to 3.0 nm, are discussed. Measurements made on roughened Si surfaces are presented which show that surface morphology on a submicron spatial scale results in enhanced Raman intensities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was supported by the Department of the Air Force, in part with specific funding from the Air Force Office of Scientific Research.

References

REFERENCES

1 Fan, J. C. C., Geis, M. W. and Tsaur, B-Y., Appl. Phys. Lett. 38, 365 (1981).CrossRefGoogle Scholar
2 Maby, E. W., Geis, M. W., LeCoz, Y.-L., Silversmith, D. J., Mountain, R. W. and Antoniadis, D. A., IEEE Electron Device Lett. EDL–2, 241 (1981).CrossRefGoogle Scholar
3 Hynecek, J., J. Appl. Phys. 45, 2631 (1974).CrossRefGoogle Scholar
4 Schlotterer, H., Solid State Electron. 11, 947 (1968).CrossRefGoogle Scholar
5 Tsaur, B-Y., Fan, J. C. C. and Geis, M. W., Appl. Phys. Lett. 40, 322 (1982).CrossRefGoogle Scholar
6 Novak, I. I., Baptizmanskii, V. V. and Zhosa, L. V., Opt. Spectrosc. (USSR) 43, 145 (1977).Google Scholar
7 Englert, Th., Arbstreiter, G. and Pontcharra, J., Solid State Electron. 23, 31 (1980).CrossRefGoogle Scholar
8 Sai-Halasz, G. A., Fang, F. F., Sedgwick, T. O. and Segmuller, A., Appl. Phys. Lett. 36, 419 (1980).CrossRefGoogle Scholar
9 Kobayashi, Y., Nakamura, M. and Suzuki, T., Appl. Phys. Lett. 40, 1040 (1982).CrossRefGoogle Scholar
10 Nemanich, R. J. and Haneman, D., Appl. Phys. Lett. 40, 785 (1982).CrossRefGoogle Scholar
11 Brueck, S. R. J., Tsaur, B-Y., Fan, John C. C., Murphy, D. V., Deutsch, T. F. and Silversmith, D. J., Appl. Phys. Lett. 40, 895 (1982).CrossRefGoogle Scholar
12In the coplanar process, active Si islands are masked with Si3N4 and the unutilized Si is oxidized, in steam, to the A12O3 substrate. Subsequently, the exposed oxide is wet-etched to the level of the Si islands and the Si3N4 mask is stripped.Google Scholar
13 Ipri, A. C., in Silicon Integrated Circuits, Part A Supplement 2, Applied Solid State Science, Kahng, D., editor (Academic Press, New York, 1981), p. 253.CrossRefGoogle Scholar
14 Kamiya, T., Kishi, M., Ushirokawa, A. and Katoda, T., Appl. Phys. Lett. 38, 377 (1981).CrossRefGoogle Scholar
15 Iqbal, Z., Webb, A. P. and Veprek, S., Appl. Phys. Lett. 36, 163 (1980).CrossRefGoogle Scholar
16 Salathe, R. P., Weber, H. P. and Badertscher, G., Phys. Lett. 80A, 65 (1980).CrossRefGoogle Scholar
17 Iqbal, Z., Veprek, S., Webb, A. P. and Capezutto, P., Solid State Commun. 37, 993 (1981).CrossRefGoogle Scholar
18 Morhange, J. F., Kanellis, G. and Balkanski, M., Solid State Commun. 31, 805 (1979).CrossRefGoogle Scholar
19 Sarott, F.-A., Iqbal, Z. and Veprek, S., Solid State Commun. 42, 465 (1982).CrossRefGoogle Scholar
20 Nakashima, S., Oima, S. and Mitsuishi, A., Solid State Commun. 40, 765 (1981).CrossRefGoogle Scholar
21 Kanellis, G., Morhange, J. F. and Balkanski, M., Phys. Rev. B 21, 1543 (1980).CrossRefGoogle Scholar
22 Levine, B. F., Bethea, C. G., Tretola, A. R. and Korngor, M., Appl. Phys. Lett. 37, 595 (1980).CrossRefGoogle Scholar
23 Aspnes, D. E. and Theeten, J. B., Phys. Rev. Lett. 43, 1046 (1979).CrossRefGoogle Scholar
24 Ponce, F. A., Appl. Phys. Lett. 41, 371 (1982).CrossRefGoogle Scholar
25 Ruppin, R. and Englman, R., Rep. Prog. Phys. 33, 149 (1970).CrossRefGoogle Scholar
26. See, for example, Surface Enhanced Raman Scattering, edited by Chang, R. K. and Furtak, T. E., (Plenum Press, New York, 1982).CrossRefGoogle Scholar
27. Ashkin, A. and Dziedzic, J. M., Phys. Rev. Lett. 38, 1351 (1977).CrossRefGoogle Scholar
28. Benner, R. E., Barber, P. W., Owen, J. F. and Chang, R. K., Phys. Rev. Lett. 44, 475 (1980).CrossRefGoogle Scholar