Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T18:02:26.226Z Has data issue: false hasContentIssue false

Optical Limiting Processes in Derivatized Fullerenes and Porphyrins/Phthalocyanines

Published online by Cambridge University Press:  10 February 2011

R. Kohlman
Affiliation:
Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545
V. Klimov
Affiliation:
Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545
X. Shi
Affiliation:
Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545
M. Grigorova
Affiliation:
Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545
B. R. Mattes
Affiliation:
Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545
D. McBranch
Affiliation:
Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545
H. Wang
Affiliation:
University of California, Los Angeles, CA 90095
F. Wudl
Affiliation:
University of California, Los Angeles, CA 90095
J.-L. Nogués
Affiliation:
GELTECH, Inc., Orlando, FL 32826
W. Moreshead
Affiliation:
GELTECH, Inc., Orlando, FL 32826
Get access

Abstract

We review our results from spectral studies of the ultrafast excited-state absorption in fullerenes and derivatized fullerenes. These results allow determination of both the spectral response of reverse saturable absorption (RSA) nonlinearities such as optical limiting (OL) in fullerenes, and the dynamical response for different morphologies. We have investigated the effects of thin film and various sol-gel glass environments on the nanosecond OL and femtosecond dynamics of derivatized fullerenes. These data provide evidence of decay pathways which compete with the intersystem crossing to a triplet from the initial singlet states. With appropriate processing, however, the OL response of derivatized-fullerene sol-gel glasses can be enhanced to approach that of the same molecule in solution, while significantly enhancing the optical damage threshold. The optical limiting of these derivatized fullerenes is compared with that of various porphyrin and phthalocyanine molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tutt, L. and Boggess, T., “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quant. Elect., vol.17, pp. 299338, 1993.Google Scholar
2. Tutt, L. and Kost, A., “Optical limiting performance of c60 and c70 solutions,” Nature, vol.356, pp. 225226, 1992.Google Scholar
3. Smilowitz, L., McBranch, D., Klimov, V., Robinson, J., Koskelo, A., Grigorova, M., Mattes, B., Wang, H., and Wudl, F., “Enhanced optical limiting in derivatized fullerenes,” Opt. Lett., vol.21, p. 922, 1996.10.1364/OL.21.000922Google Scholar
4. McLean, D., Sutherland, R., Brant, M., Brandelik, D., Fleitz, P., and Pottenger, T., “Nonlinear absorption study of a c60-toluene solution,” Opt. Lett., vol.18, pp. 858860, 1993.Google Scholar
5. Sension, R. J., Phillips, C. M., Szarka, A. Z., Romanov, W. J., McGhie, A. R., , J. P. M. Jr., III, A. B. S., and Hochstrasser, R. M., “Transient absorption studies of c60 in solution,” J. Phys. Chem., vol.95, p. 6075, 1991.Google Scholar
6. Ebbesen, T. W., Tanigaki, K., and Kuroshima, S., “Excited-state properties of c60,” Chem. Phys. Lett. vol.181, p. 501, 1991.Google Scholar
7. Arbogast, J., Darmanyan, A., Foote, C., Rubin, Y., Diederich, F., Alvarez, M., Anz, S., and Whetten, R., “Photophysical properties of c60,” J. Phys. Chem., vol.95, pp. 1112, 1991.10.1021/j100154a006Google Scholar
8. Klimov, V., McBranch, D., Smilowitz, L., Robinson, J., Mattes, B. R., Koskelo, A., Wang, H., and Wudl, F., “Femtosecond to nanosecond dynamics of c60: implications for excited-state nonlinearities,” Res. Chem. Intermed., special issue, vol.23, pp. 587600, 1997.Google Scholar
9. Hummelen, J. C., Knight, B. W., Lepec, F., Wudl, F., Yao, J., and Wilkins, C. L., “Preparation and characterization of fulleroid and methanofutlerene derivatives,” J. Org. Chem., vol.60, p. 532, 1995.Google Scholar
10. McBranch, D., Klimov, V., Smilowitz, L., Grigorova, M., Mattes, B. R., Robinson, J., Koskelo, A., Wang, H., and Wudl, F., “Femtosecond excited-state absorption dynamics and optical limiting in fullerene solutions, sol-gel glasses, and thin films,” SPIE Proceedings, Fullerenes and Photonics III, vol. 2854, p. 140, 1996.Google Scholar
11. Maggini, M., Scorrano, G., Prato, M., Brusatin, G., Innocenzi, P., Guglielmi, M., Renier, A., Signorini, R., Meneghetti, M., and Bozio, R., “C60 derivatives in sol-gel glasses,” R. Adv. Mater., vol.7, pp. 404406, 1995.Google Scholar
12. Kohlman, R., Klimov, V., Grigorova, M., Shi, X., Mattes, B. R., McBranch, D., Wang, H., Wudl, F., Nogués, J.-P., and Moreshead, W., “Ultrafast and nonlinear optical characterization of optical limiting processes in fullerenes,” SPIE Proceedings, Fullerenes and Photonics IV, p. in press, 1997.Google Scholar
13. Brunel, M., Chaput, F., Vinogradov, S., Canva, C. B, M., Boilot, J. P., and Brun, A., “Reverse saturable absorption in palladium and zinc tetraphenyltetrabenzoporphyrin doped xerogels,” Chem. Phys., vol.218, pp. 301307, 1997.Google Scholar
14. Perry, J., Mansour, K., Lee, I.-Y., Wu, X.-L., Bedworth, P., Chen, C.-T., Ng, D., Marder, S., Miles, P., Wada, T., Tian, M., and Sasabe, H., “Organic optical limiter with a strong nonlinear absorptive response,” Science, vol.273, pp. 15331536, 1996.Google Scholar
15. Xia, T., Hagan, D. J., Dogariu, A., Said, A. A., and Stryland, E. W. V., “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt., vol.36, no. 18, pp. 41104122, 1997.Google Scholar
16. Klimov, V. and McBranch, D., “Femtosecond high-sensitivity, chirp-free transient absorption spectroscopy,” Opt. Lett., submitted.Google Scholar
17. Guldi, D. and Asmus, K.-D., “Photophysical properties of mono- and multiply-functionalized fullerene derivatives,” J. Phys. Chem., vol.101, pp. 14721481, 1997.Google Scholar
18. Dexheimer, S. L., Varecka, W. A., Shank, C. V., Mittelman, D., and Zettl, A., “Nonexponential relaxation in solid C60 via time-dependent singlet exciton annihilation,” Chem. Phys. Lett., vol.235, p. 552, 1995.Google Scholar