Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T03:37:37.306Z Has data issue: false hasContentIssue false

Optical investigations on sputtered CuCl thin films

Published online by Cambridge University Press:  01 February 2011

Gomathi Natarajan
Affiliation:
[email protected], Dublin City University, Electronic Engineering, Glasnevin, Dublin, N/A, D9, Ireland, 0035317007668, 0035317005508
Anirban Mitra
Affiliation:
[email protected], Trinity College Dublin, Optoelectronics Laboratory, Ireland
Lisa O'Reilly
Affiliation:
[email protected], Dublin City University, Nanomaterials Processing Laboratory (NPL), RINCE, School of Electronic Engineering, Ireland
Stephen Daniels
Affiliation:
[email protected], Nanomaterials Processing Laboratory (NPL), NCPST, School of Electronic Engineering, Ireland
David C. Cameron
Affiliation:
[email protected], Lappeenranta University of Technology, 3Advanced Surface Technology Research Laboratory (ASTRaL), Mikkeli Research Centre, Finland
Patrick J. McNally
Affiliation:
Olabanji F. Lucas
Affiliation:
[email protected], Dublin City University, Nanomaterials Processing Laboratory (NPL), RINCE, School of Electronic Engineering, Ireland
Louise Bradley
Affiliation:
[email protected], Trinity College Dublin, Optoelectronics Laboratory, Ireland
Get access

Abstract

Copper (I) chloride (CuCl) is a potential candidate for ultra violet optoelectronics due to the fact that it is closely lattice matched with silicon, which makes it readily integrable with silicon device technology. The structural and optoelectronic properties of CuCl thin films deposited by RF magnetron sputtering are investigated. The crystallinity is studied using X-ray diffraction which confirms the growth of CuCl thin films with cubic zinc blende structure predominantly orientated in <111> direction. Excitonic transitions in the thin films were thoroughly investigated using optical absorbance and luminescence spectroscopies. Room temperature absorption spectroscopic analysis confirms the existence of two exciton peaks namely Z12 and Z3 at 372 and 380 nm respectively. A strong UV emission is observed at room temperature in cathodoluminescence and photoluminescence spectra due to the recombination of Z3 exciton at approximately 384 nm. In the low temperature photoluminescence spectrum, a free exciton (Z3) and a bound exciton (I1) are observed. A variation of 1.3 nm to 10 nm was observed in the Z3 exciton line width from 10 K to 300 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
2 Guha, S. and Bojarczuk, N. A., Appl. Phys. Lett. 72, 415 (1998).Google Scholar
3 Yang, J. W., Lunev, A., Simin, G., Chitnis, A., Shatalov, M., Kahn, M. A., Van Nostrand, J. E. and Gaska, R., Appl. Phys. Lett. 76, 273 (2000).Google Scholar
4 Ohtani, A., Stevens, K. S. and Beresfor, R., Appl. Phys. Lett. 65, 61 (1994).Google Scholar
5 Nakayama, M., Ichida, H. and Nishimura, H., J. Phys.: Condens. Matter. 11, 7653 (1999).Google Scholar
6 Fujimura, N., Nishihara, T., Goto, S., Xu, J. and Ito, T., J. Cryst. Growth, 130, 269 (1993).Google Scholar
7 Powder diffraction files, JCPDS Pattern 06–344.Google Scholar
8 Natarajan, Gomathi, Daniels, S., Cameron, D. C., O'Reilly, L., McNally, P. J., Lucas, O., Reid, I., Rajendra Kumar, R.T., Mitra, A. and Bradley, L., J. Appl. Phys. (2005)- under review.Google Scholar
9 Yanase, A. and Segawa, Y. Surf. Sci. 357–358, 885 (1996).Google Scholar
10 Goldmann, A., Phys. Stat. Sol. (b) 81, 9 (1977).Google Scholar
11 Cardona, M., Phys. Rev. 129, 69 (1963).Google Scholar
12 Suyal, G., Menning, M., and Schmidt, H., J. Mater. Chem. 12, 3136 (2002).Google Scholar
13 Natarajan, Gomathi, Rajendra Kumar, R. T., Daniels, S., Cameron, D., McNally, P.J., J. Appl. Phys. - Communicated.Google Scholar
14 Certier, M., Wecker, C. and Nikitine, S., J. Phys. Chem. Solids 30, 2135 (1969).Google Scholar
15 Goto, T., Takahashni, T. and Ueta, M., J. Phys. Soc. Japan, 24, 314 (1968).Google Scholar
16 Ueta, M., Kanzaki, H., Kobayashi, K., Toyozawa, Y. and Hanumara, E., Excitonic processes in Solids, (Springer, Berlin, 1986)Google Scholar
17 Masumoto, Y., Wamura, T. and Iwaki, A., Appl. Phys. Lett. 55, 2535 (1989).Google Scholar
18 Minsky, M. S., Fleischer, S. B., Abare, A. C., Bowers, J. E., and Hu, E. L., Keller, S. and Denbaars, S. P., Appl. Phys. Lett. 72, 1066 (1998).Google Scholar
19 Kim, K-K., Song, J-H., Jung, H-J., Choi, W-K., Park, S-J. and Song, J-H., J. Appl. Phys. 87, 3573 (1996).Google Scholar