Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:49:31.818Z Has data issue: false hasContentIssue false

Optical Investigations of InAs Growth on GaAs and Lasing in Singly and Multiply Stacked Island Quantum Boxes

Published online by Cambridge University Press:  03 September 2012

A. Kalburge
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, Los Angeles, CA 90089-0241.
T. R. Ramachandran
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, Los Angeles, CA 90089-0241.
R. Heitz
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, Los Angeles, CA 90089-0241.
Q. Xie
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, Los Angeles, CA 90089-0241.
P. Chen
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, Los Angeles, CA 90089-0241.
A. Madhukar
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, Los Angeles, CA 90089-0241.
Get access

Abstract

We report on the optical investigations of InAs growth on GaAs. In-situ STM/AFM studies show the presence of features 2-4 ML high, which we call quasi-3D (Q3D) clusters, well in advance of 3D island formation. Though the photoluminescence (PL) emission from these Q3D clusters is in the same wavelength regime as that from well developed 3D islands, they show characteristic differences in the PL excitation spectra and temperature dependence of PL, distinguishing them clearly from the 3D islands. Finally, we discuss the lasing observed from lasers containing single and five sets of InAs layers grown with conditions in which the in-situ STM/AFM studies show only 3D islands.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Guha, S., Madhukar, A., and Rajkumar, K. C., Appl.Phys.Lett., 57, 2110 (1990).Google Scholar
2 Leonard, D., Ond, K., and Petroff, P. M., Phys. Rev., B 50, 11687 (1994).Google Scholar
3 Gerard, J. M., et al, J.Cryst.Growth., 150, 351 (1995).Google Scholar
4 Xie, Q., et al, J. Crsyt. Growth, 150, 357 (1995).Google Scholar
5 Polimeni, A., et al, Phys. Rev. B 53, R4213 (1996).Google Scholar
6 Bimberg, D., et al, Jpn. J. Appl. Phys., 35, 1311 (1996).Google Scholar
7 Ramachandran, T. R., et al, J. Cryst. Growth (to be published).Google Scholar
8 Grundmann, M., et al, Phys.Rev.Ltt., 74, 4043 (1995).Google Scholar
9 Arakawa, Y., and Sakaki, H., Appl.Phys.Lett., 40, 939 (1982).Google Scholar
10 Kirstaedter, N., et al, Electron. Lett., 30, 1416 (1994).Google Scholar
11 Shoji, H., et al, IEEE Photon. Technol. Lett., 12, 1385 (1995).Google Scholar
12 Shoji, H., et al, Jpn. J. Appl. Phys. 35, L903 (1996).Google Scholar
13 Xie, Q., étal, IEEE Photon. Technol. Lett., 8, 965 (1996).Google Scholar
14 Schmidt, O., étal, Electron. Lett., 32, 1302 (1996).Google Scholar
15 Kirstaedter, N., etal, , Appl.Phys.Lett., 69, 1226 (1996).Google Scholar
16 Kamath, K., et al, Electron. Lett., 32, 1374 (1996); R. Mirin, et al, Electron. Lett., 32, 1732 (1996).Google Scholar
17 Kobayashi, N.P.et al, Appl.Phys.Lett., 68, 3299 (1996).Google Scholar
18 Ramachandran, T.R., et al, Appl. Phys. Lett, (to be published).Google Scholar
19 Heitz, R., etal,, Appl.Phys.Lett., 68, 361 (1996).Google Scholar
20 Xie, Q., etal, Phys.Rev.Lett., 75, 2542 (1995).Google Scholar
21 Asryan, L. V., and Suris, R. A., Semicond.Sci.Technol., 11, 554 (1996).Google Scholar