Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:40:16.902Z Has data issue: false hasContentIssue false

Optical Integrated Waveguides Characterization by Scanning Near Field Optical Microscope

Published online by Cambridge University Press:  10 February 2011

X. Borrisé
Affiliation:
Dept. Enginyeria Electrònica. Universitat Autònoma de Barcelona 08193-Bellaterra. Spain. [email protected]
N. Barniol
Affiliation:
Dept. Enginyeria Electrònica. Universitat Autònoma de Barcelona 08193-Bellaterra. Spain.
F. Pérez-Murano
Affiliation:
Dept. Enginyeria Electrònica. Universitat Autònoma de Barcelona 08193-Bellaterra. Spain.
G. Abadal
Affiliation:
Dept. Enginyeria Electrònica. Universitat Autònoma de Barcelona 08193-Bellaterra. Spain.
X. Aymerich
Affiliation:
Dept. Enginyeria Electrònica. Universitat Autònoma de Barcelona 08193-Bellaterra. Spain.
D. Jiménez
Affiliation:
Dept. Enginyeria Electrònica. Universitat Autònoma de Barcelona 08193-Bellaterra. Spain.
Get access

Abstract

In this work, we present (i) the development of a scanning near-field optical microscope (SNOM) for the characterization of optical integrated devices and (ii) the description of a new lithographic technique for the modification of standard integrated optical waveguides. SNOM images of rib waveguides allow to characterise the distribution of the guided modes for up to 1 mm of propagation distance. Some of the characterised waveguides present a periodical modulation of the light in the direction of propagation which is attributed to the Tien effect. In addition, we have performed high resolution modifications on the rib waveguide with an atomic force microscope combined with standard microelectronics processes. We demonstrate that the combination of this new lithographic technique with SNOM characterization allows to obtain new information about the propagation of the light in low dimensional structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Valette, S., Renard, S.,Jadot, J.P., Gidon, P., and Erbeia, C., Sensors and Actuators, A21–A23, 10871091 (1990). J. Janata, M. Josowicz, P. Vanysek, D.M. DeVaney, Anal.Chem.,70, 179R–208R (1998)Google Scholar
2. Tsybeskov, L., MRS Bulletin, 23, 3338 (1998)Google Scholar
3. Bowden, C.M., Dowling, J.P. and Everitt, H.O.. J. Opt. Soc. Am. 10, 280(1993)Google Scholar
4. Fan, S., Winn, J.N., Devenyi, A., Chen, J.C., Meade, R.D., Joannopoulos, J.D.. J. Opt. Soc. Am. B, 12, 1267(1995).Google Scholar
5. Betzig, E., Trautman, J.K., Harris, T.D., Weiner, J.S., Kostelak, R.L.. Science, 251, 468(1991)Google Scholar
6. Phillips, P.L., Knight, J.C., Mangan, B.J., Russell, P.J., Charlton, M.D.B., Parker, G.J., J. Appl. Phys., 85, 63376342 (1999)Google Scholar
7. Boisen, A., Birkelund, K., Hansen, O. and Grey, F.. J. Vac. Sci. Technol. B 16(6), 2977 (1998).Google Scholar
8. Karrai, K., Grober, R.D.. Appl. Phys.Lett. vol. 66, no. 3, pp. 18421844, Apr. 1995 Google Scholar
9. Borrise, X., Jimenez, D., Barniol, N., Pérez-Murano, F.. Submitted for publication.Google Scholar
10. Bourzeix, S., Moison, J.M., Mignard, F., Barthe, F., Appl.Phys.Lett., 73, 10351037 (1998)Google Scholar
11. Tien, P.K., Gordon, J.P., Whinnery, J.R., Proc.IEEE, 53, 129136 (1965)Google Scholar