Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T04:51:46.270Z Has data issue: false hasContentIssue false

Optical Hall effect measurement of coupled phonon mode - Landau Level transitions in epitaxial Graphene on silicon carbide

Published online by Cambridge University Press:  24 June 2013

P. Kühne
Affiliation:
University of Nebraska-Lincoln, 209N Scott Engineering Center, P.O. Box 880511, Lincoln, NE 68588-0511, USA
A. Boosalis
Affiliation:
University of Nebraska-Lincoln, 209N Scott Engineering Center, P.O. Box 880511, Lincoln, NE 68588-0511, USA
C. M. Herzinger
Affiliation:
J. A. Woollam Co. Inc., 645 M Street, Suite 102, Lincoln, NE 68508-2243, U.S.A.
L.O. Nyakiti
Affiliation:
U.S. Naval Research Laboratory, Washington, DC 20374
V.D. Wheeler
Affiliation:
U.S. Naval Research Laboratory, Washington, DC 20374
R.L. Myers-Ward
Affiliation:
U.S. Naval Research Laboratory, Washington, DC 20374
C.R. Eddy Jr.
Affiliation:
U.S. Naval Research Laboratory, Washington, DC 20374
D.K. Gaskill
Affiliation:
U.S. Naval Research Laboratory, Washington, DC 20374
M. Schubert
Affiliation:
University of Nebraska-Lincoln, 209N Scott Engineering Center, P.O. Box 880511, Lincoln, NE 68588-0511, USA
T. Hofmann
Affiliation:
University of Nebraska-Lincoln, 209N Scott Engineering Center, P.O. Box 880511, Lincoln, NE 68588-0511, USA
Get access

Abstract

We report on mid-infrared (600 – 4000 cm-1), refection-type optical-Hall effect measurements on epitaxial graphene grown on C-face silicon carbide and present Landau-level transition features detected at 1.5 K as a function of magnetic field up to 8 Tesla. The Landau-level transitions are detected in reflection configuration at oblique incidence for wavenumbers below, across and above the silicon carbide reststrahlen range. Small Landau-level transition features are enhanced across the silicon carbide reststrahlen range due to surface-guided wave coupling with the electronic Landau-level transitions in the graphene layer. We analyze the spectral and magnetic-field dependencies of the coupled resonances, and compare our findings with previously reported Landau-level transitions measured in transmission configuration [4,5,6]. Additional features resemble transitions previously assigned to bilayer inclusion [21], as well as graphite [15]. We discuss a model description to account for the electromagnetic polarizability of the graphene layers, and which is sufficient for quantitative model calculation of the optical-Hall effect data.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Haldane, F. D. M., Phys. Rev. Lett. 61, 2015 (1988).CrossRefGoogle Scholar
Zheng, Y., and Ando, T., Phys. Rev. B 65, 245420 (2002).CrossRefGoogle Scholar
Gusynin, V. P., and Sharapov, S. G., Phys. Rev. Lett. 95, 146801 (2005).CrossRefGoogle Scholar
Orlita, M., Faugeras, C., Borysiuk, J., Baranowski, J.M., Strupiński, W., Sprinkle, M., Berger, C., de Heer, W.A., Basko, D. M., Martinez, G., and Potemski, M., Phys. Rev. B 83, 125302 (2011).CrossRefGoogle Scholar
Sadowski, M. L., Martinez, G., Potemski, M., Berger, C., and de Heer, W. A., Phys. Rev. Lett. 97, 266405 (2006).CrossRefGoogle Scholar
Orlita, M., Faugeras, C., Schneider, J. M., Martinez, G., Maude, D.K., and Potemski, M., Phys. Rev. Lett. 102, 166401 (2009).CrossRefGoogle Scholar
Sadowski, M. L., Martinez, G., Potemski, M., Berger, C., and de Heer, W.A., Sol. Stat. Comm. 143, 123 (2007).CrossRefGoogle Scholar
Hofmann, T., Herzinger, C. M., Krahmer, C., Streubel, K., and Schubert, M., phys. stat. sol.(a) 205, 779 (2008).CrossRefGoogle Scholar
Hofmann, T., Schade, U., Herzinger, C. M., Esquinazi, P., and Schubert, M., Rev. Sci. Instrum. 77, 063902 (2006).CrossRefGoogle Scholar
Tedesco, J. L., VanMil, B. L., Myers-Ward, R. L., McCrate, J. M., Kitt, S. A., Campbell, P. M., Jernigan, G. G., Culbertson, J. C., Eddy, C. R. Jr., and Gaskill, D., Appl. Phys. Lett. 95, 122102 (2009).CrossRefGoogle Scholar
Tedesco, J. L., Jernigan, G. G., Culbertson, J. C., Hite, J. K., Yang, Y., Daniels, K. M., Myers-Ward, R. L., Eddy, C. R. Jr., Robinson, J. A., Trumbull, K. A., Wetherington, M. T., Campbell, P. M., and Gaskill, D. K., Appl. Phys. Lett. 96, 222103 (2010).CrossRefGoogle Scholar
Fujiwara, H., “Spectroscopic Ellipsometry Principles and Applications”, (Maruzen Co. Ltd, Tokyo 2007)CrossRefGoogle Scholar
Kühne, P., Hofmann, T., Herzinger, C. M., and Schubert, M., Rev. Sci. Instrum. to be publishedGoogle Scholar
Tiwald, T., Thomas, E., Woollam, J. A., Zollner, S., Christiansen, J., Gregory, R. B., Wetteroth, T., Wilson, S. R., and Powell, A. R., Phys. Rev. B 60, 11464 (1999).CrossRefGoogle Scholar
Drude, P., Annalen der Physik und Chemie 271, 508 (1888).CrossRefGoogle Scholar
Hofmann, T., Chavdarov, T., Darakchieva, V., Lu, H., Schaff, W. J., and Schubert, M., phys. stat. sol.(c) 3, 1854 (2006).CrossRefGoogle Scholar
Hofmann, T., Herzinger, C.M., Krahmer, C., Streubel, K., and Schubert, M., phys. stat. sol. (a) 205, 779 (2008) and references therein.CrossRefGoogle Scholar
Hofmann, T., Boosalis, A., Kühne, P., Herzinger, C. M., Woollam, J. A., Gaskill, D. K., Tedesco, J. L., and Schubert, M., Appl. Phys. Lett. 98, 041906 (2011).CrossRefGoogle Scholar
Schubert, M., Hofmann, T., and Šik, J., Phys. Rev. B 71, 035324 (2005).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666669 (2004).CrossRefGoogle Scholar
Koshino, M., and Ando, T., Phys. Rev. B 77, 115313 (2008).CrossRefGoogle Scholar
Schubert, M., Ann. Phys. 15, 480 (2006).CrossRefGoogle Scholar
Kühne, P., Hofmann, T., Herzinger, C.M., and Schubert, M., Thin Solid Films 519, 2613 (2011).CrossRefGoogle Scholar
Schubert, M., Hofmann, T., and Sik, J., Phys. Rev. B 71, 035324 (2005).CrossRefGoogle Scholar