Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T16:01:14.048Z Has data issue: false hasContentIssue false

Optical, Electrical and Surface Characterization of Mercuric Iodide Platelets Grown in the HgI 2-HI-H2O System

Published online by Cambridge University Press:  10 February 2011

L. Fornaro
Affiliation:
Radiochemistry Department, Faculty of Chemistry, Montevideo, Uruguay,[email protected]
H. Chen
Affiliation:
NASA Center for Photonic Materials and Devices, Department of Physics, Fisk University, Nashville, TN 37208, USA
K. Chattopadhyay
Affiliation:
NASA Center for Photonic Materials and Devices, Department of Physics, Fisk University, Nashville, TN 37208, USA
K.-T Chen
Affiliation:
NASA Center for Photonic Materials and Devices, Department of Physics, Fisk University, Nashville, TN 37208, USA
A. Burger
Affiliation:
NASA Center for Photonic Materials and Devices, Department of Physics, Fisk University, Nashville, TN 37208, USA
Get access

Abstract

The optical, electrical and surface properties of mercuric iodide platelets grown from solution in a HgI2-HI-H2O system were investigated by comparing them with Physical Vapor Transport (PVT) grown crystals. The absence of bulk imperfections and the uniformity of the as-grown surfaces and the KI solution etched surfaces were confirmed by optical microscopy. The as-grown surface uniformity is higher for solution grown crystals than that of PVT crystals, since the platelets do not have to be cleaved or polished. AFM studies show that the roughness for the cleaved, aged and etched surfaces were 0.06 nm, 0.48 nm and 0.3 nm respectively. Low temperature photoluminescence properties were measured for the two kind of crystals and will be discussed. However, I-V curves give higher current density and lower apparent resistivity values for the solution grown than for PVT grown crystals. Correlations between optical and surface quality as well as the electrical properties of the crystals grown from both solution and PVT methods are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schieber, M., Nucl. Instr. and Meth. 144, 469 (1977).Google Scholar
2. Burger, A. and Nason, D., J. Appl. Phys. 71, 2717 (1992).Google Scholar
3. Merz, J.L. and Wu, Z.L., Nucl. Instr. and Meth. 213, 51 (1983).Google Scholar
4. Nicolau, Y.F., Nucl. Instr. and Meth. 213, 13 (1983).Google Scholar
5. Beyerle, A., Hull, K., Markakis, J. and Lopez, B., Nucl. Instr. and Meth. 213, 107 (1983).Google Scholar
6. Levi, A., Burger, A., Nissenbaum, J. and Schieber, M., Nucl. Instr. and Meth. 213, 35 (1983).Google Scholar
7. Schieber, M., Roth, M. and Schnepple, W.F., J. Cryst. Growth 65, 353 (1983).Google Scholar
8. Faile, P., Dabrowski, A.J., Huth, G.C. and Iwanczyk, J.S., J. Cryst. Growth 50,752 (1980).Google Scholar
9. Burger, A., Roth, M. and Schieber, M., J. Cryst. Growth 56, 526 (1982).Google Scholar
10. Burger, A., Levi, A., Nissenbaum, J., Roth, M. and Schieber, M., J. Cryst. Growth 72, 643 (1985).Google Scholar
11. Carlston, R.C., Schieber, M.M., Schnepple, W.F., Mat. Res. Bull V 11, 959 (1976).Google Scholar
12. Nicolau, Y.F., J. Cryst. Growth 48, 61 (1980).Google Scholar
13. Burger, A., Nason, D., van den Berg, L. and Schieber, M. in Semiconductors for Room Temperature Nuclear Detector Applications”, Semiconductors and Semimetals Vol.43. Edited by Schlesinger, T.E. and James, R.B. (Academic Press, Inc., San Diego, CA, USA, 1995), p. 98.Google Scholar
14. Fomaro, L., Luchini, L., Köncke, M., Mussio, L., Quagliata, E., Chattopadhyay, K. and Burger, A., unpublished.Google Scholar
15. James, K., Gerrish, V., Cross, E., Markakis, J., Marschall, J. and Milstein, F., Nucl. Instr. and Meth. A 322, 390 (1992).Google Scholar
16. Milstein, F., Farber, B., Kim, K., van den Berg, L. and Schnepple, W.F., Nucl. Instr. and Meth. 213, 65 (1983).Google Scholar
17. Milstein, F., james, T.W. and Georgeson, G., Nucl. Instr. and Meth. A 285, 500 (1989).Google Scholar
18. Nicolau, Y. F., Dupuy, M. and Rolland, G., J. Mater. Sci.: Mater. in Elect. 4, 129 (1993).Google Scholar
19. Jayatirtha, H.N., Azoulay, M., George, M.A. and Burger, A. in Room Temperature Radiation Detector Applications, Mater. Res. Soc. Proc. 302, 161 (1993).Google Scholar
20. Azoulay, M., George, M.A., Jayatirtha, H.N., Biao, Y., Burger, A. and Silberman, E., J. Vac. Sci. Technol. B 11(5), 1782 (1993).Google Scholar
21. George, M.A., Azoulay, M., Burger, A., Biao, Y., Silberman, E. and Nason, D., Thin Solid Films, 236,180 (1993).Google Scholar
22. Schieber, M., Roth, M., Yao, H., De Vries, M., James, R.B. and Goorsky, M., J. Cryst. Growth 146, 15 (1995).Google Scholar
23. Bao, X.J., James, R.B., Hung, C.Y., Schkesinger, T.E., Cheng, A.Y., Ortale, C. and van den Berg, L., SPIE Proc. 1736, 60 (1992).Google Scholar
24. Merz, J.L., Wu, Z.L., van den Berg, L. and Schnepple, W.F., Nucl. Instr. and Meth. 213, 51 (1983).Google Scholar
25. Bao, X.J., Schlesinger, T.E., James, R.B., Stulen, R.H., Ortale, C. and Cheng, A.Y., J. Appl. Phys. 68, 86 (1990).Google Scholar
26. Braatz, U. and Zappe, D., Phys. Stat. Sol. (a) 86, 407 (1984).Google Scholar
27. Levi, A., Schieber, M.M. and Burshtein, Z., J. Appl. Phys. 57, 1944 (1985).Google Scholar