Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:44:19.804Z Has data issue: false hasContentIssue false

Optical, Dielectric and SHG measurement of semiorganic NLO single crystals: Triglycine Sodium halides

Published online by Cambridge University Press:  19 August 2014

R. Ananad kumari*
Affiliation:
Sree Siddaganga College of Arts, Science and Commerce for Women, Tumkur, Karnataka, [email protected]
Get access

Abstract

Single crystals of semiorganic nonlinear optical material Triglycine Sodium Halides(TGSH) have been grown from aqueous solution by slow evaporation technique at constant temperature. The powder X-ray diffraction of the grown crystals is recorded and indexed. Functional groups present in the samples are identified by FTIR spectral analysis. The optical absorption studies shows that the UV cut off wavelength is around 300nm and has a wide transparency window. The powder second harmonic generation efficiency of the crystals is measured by Kurtz and Perry powder technique using Nd:YAG laser and it is 1.5 times for Triglycine Sodium Chloride, 1.2 times for Triglycine Sodium Bromide and 1.4 times for Triglycine potassium Iodide crystals that of the standard KDP crystals. Triglycine Sodium halide crystals show very good stability under laser irradiation with no signs of decomposition. Laser damage threshold energy density of Triglycine Sodium Iodide is found to be 857 MW/cm2 and 540MW/cm2 for Triglycine Sodium Chloride crystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nalwa, H.S., Miyata, S., Nonlinear Optics of Organic Molecules and polymers. CRC Press, New York, (1997)Google Scholar
Prasad, P.N., Williams, D.J., Introduction to Nonlinear Optical effects in Organic Molecules and Polymers, Wiley, Newyork 1991 Google Scholar
Xu, D., Xue, D., J.Cryst. Growth. 310, 1385 (1991)CrossRefGoogle Scholar
Ren, X., Xu, D., Xue, D., J.Cryst.Growth. 310, 2005 (2008).CrossRefGoogle Scholar
Yu, D., Xue, D., Ratajczak, H., J.Mol.Struct. 280, 792793 (2006)Google Scholar
Yu, D., Xue, D., Ratajczak, H., Phys. B: Condens. Matter 371(1), 170 (2006).CrossRefGoogle Scholar
Xu, D., Xue, D., J.Cryst. Growth. 286, 108 (2006)CrossRefGoogle Scholar
Franken, P.A., Hill, A.E., Peters, C.W., Weinreich, G., Phys.Rev.Lett. 7, 118 (1961)CrossRefGoogle Scholar
Wang, X., Xu, D., Lu, M., Yuan, D., Haung, J., Cheng, X., Xie, T., Zhang, G., Wang, S., Guo, D., Liu, J., Yang, Z., Wang, P., J.Cryst.Growth. 234, 469 (2002)CrossRefGoogle Scholar
Boomadevi, S., Mittal, H.P., Dhanasekaran, R., J.Cryst.Growth., 261, 55(2004).CrossRefGoogle Scholar
Goma, S., Padma, C.M., Mahadevan, C.K., Lett., 60, 3701(2006).Google Scholar
Li, Z., Wu, B., Su, G., Appl. Phys.Lett. 70, 562 (1997)CrossRefGoogle Scholar
Kurtz, K., Perry, T.T, J.Appl.Phys., 39, 3798( 1968).Google Scholar
Shanmugavadivu, Ra., Ravi, G., Nixon Azarioh, A., J.Physics and Chemistry of Solids, 67, 1858(2006).CrossRefGoogle Scholar
Balakrishna, T., Ramamurthi, K., Spectrochimica Acta Part A, 68, 360(2007)CrossRefGoogle Scholar
Bhar, G.C., Chaudhary, A.K., Kumibhakar, P., Appl. Surface Science 161 155 (2000).CrossRefGoogle Scholar