Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:17:12.501Z Has data issue: false hasContentIssue false

Optical Characterization of Individual Nanostructures by STM Light Emission

Published online by Cambridge University Press:  10 February 2011

S. Ushioda*
Affiliation:
Research Institute of Electrical Communication Tohoku University, Sendai 980–77, Japan and CREST-Japan Science and Technology Corporation
Get access

Abstract

Visible light is emitted when electrons (holes) are injected into a sample from the tip of the scanning tunneling microscope (STM). By analyzing the spectra of the emitted light, one can not only determine the surface geometry by usual STM imaging, but also learn the electronic and optical properties of specific individual nanostructures. This technique has been applied to investigate the electronic transitions of individual protrusions of porous Si and semiconductor quantum wells of AlGaAs/GaAs. The usefulness, limitations, and future expectations of this novel technique are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gimzewski, J. K., Reihl, B., Coombs, J. H., and Schlittler, R. R., Z. Phys. B72, 497 (1988) and J. H. Coombs, J. K. Gimzewski, B. Reihl, J. K. Sass, and R. R. Schlittler, J. Microsc. 152, 325 (1988).Google Scholar
2. See for example: Uehara, Y., Fujita, T., and Ushioda, S., Phys. Rev. Lett., 83 (1999) 2445; A. Downes and M. E. Welland, Phys. Rev. Lett. 81, 1857 (1998); Z. Wu, T. Nakayama, S. Qiao, and M. Aono, Appl. Phys. Lett. 73, 2269 (1998); R. Berndt, R. Gaisch, W. D. Schneider, J. K. Gimzewski, B. Reihl, R. R. Schlittler, and M. Tschudy, Phys. Rev. Lett. 74, 102 (1995); P. Renaud and S. F. Alvarado, Phys. Rev. B44, 6340 (1991).Google Scholar
3. Ito, K. J., Ito, K., Uehara, Y., and Ushioda, S., Rev. Sci. Instrum. (in press for Feb., 2000).Google Scholar
4. Arafune, R., Sakamoto, K., and Ushioda, S., (to be published).Google Scholar
5. See for example: Abraham, D. L., Veider, A., Schonenberger, Ch., Meier, H. P., Arent, D. J., and Alvarado, S. F., Appl. Phys. Lett. 56, 1564(1990), and R. Berndt and J. K. Gimzewski, Phys. Rev. B45, 14095 (1992).Google Scholar
6. Canham, L. T., Appl. Phys. Lett., 57 (1990) 1046, and A. G. Cullis and L. T. Canham, Nature 353 (1991) 335.Google Scholar
7. Ito, K., Ohyama, S., Uehara, Y., and Ushioda, S., Appl. Phys. Lett., 67 (1995) 2536.Google Scholar
8. Dumas, Ph., Gu, M., Syrykh, C., Gimzewski, J. K., Makarenko, I., Halimaoui, A., and Salvan, F., Europhys. Lett. 23, 197(1993).Google Scholar
9. Ph. Dumas, Gu, M., Syrykh, C., Hallimaoui, A., Salvan, F., Gimzewski, J. K., and Schlittler, R. R., J. Vac. Sci. 12, 2064(1994).Google Scholar
10. Delly, B. and Steigmeier, E. F., Phys. Rev., B47 (1993) 1397.Google Scholar
11. Alvarado, S. F., Renaud, Ph., Abraham, D. L., Schönenberger, Ch., Arent, D. J., and Meier, H. P., J. Vac. Sci. Technol., B9 (1991) 409, D. L. Abraham, A. Veider, Ch. Schonenberger, H. P. Meier, D. J. Arent, and S. F.Alvarado, J. Vac. Sci. 9, 409(1991).Google Scholar
12. Tsuruoka, T., Ohizumi, Y., Ushioda, S., Ohno, Y., and Ohno, H., Appl. Phys. Lett., 73 (1998) 1544.Google Scholar
13. Tsuruoka, T., Ohizumi, Y., Tanimoto, R., and Ushioda, S., Appl. Phys. Lett. 75, 2289(1999).Google Scholar