Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:41:33.992Z Has data issue: false hasContentIssue false

Optical Characterization of GaN Films Grown on (0001) Sapphire Substrate

Published online by Cambridge University Press:  15 February 2011

K. Yang
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R.China
R. Zhang
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R.China
Y. D. Zheng
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R.China
L. H. Qin
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R.China
B. Shen
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R.China
H. T. Shi
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R.China
Z. C. Huang
Affiliation:
Department of Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21228–5398, USA
J. C. Chen
Affiliation:
Department of Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21228–5398, USA
Get access

Abstract

The optical properties of single crystal hexagonal GaN films grown on (0001) sapphire substrate by metalorganic chemical vapor deposition were investigated. The energy gap of hexagonal GaN was determined as 3.39 and 3.400 eV by optical transmission and photoreflectance, respectively. The refractive index of GaN as a function of photon energy was drawn from the transmission spectrum. Furthermore, Raman scattering spectra were employed to study the phonon modes of the GaN film. The properties of LO phononplasmon coupled modes were further studied, and the carrier concentration and damping constant were determined by line-shape fitting of the coupled modes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B, 10 (4), 1237 (1992)Google Scholar
2. Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B. and Burns, M., J. Appl. Phys., 76, 1363(1994), and references therein.Google Scholar
3. Khan, M. A., Kuznia, J. N., Bhattarai, A. R. and Olson, D. T., Appl. Phys. Lett., 62(15), 1786(1993)Google Scholar
4. Nakamura, S., Mukai, T. and Senoh, M., Appl. Phys. Lett., 64 (13), 1687(1994)Google Scholar
5. Fertitta, K. G., Holmes, A. L., et al., Appl. Phys. Lett., 65 (14), 1823(1994)Google Scholar
6. Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I., Jpn. J. Appl. Phys., 28, L2112(1989)Google Scholar
7. Singh, R., Molnar, R. J., Unlu, M. S. and Moustakas, T. D., Appl. Phys. Lett., 64(3), 336 (1994)Google Scholar
8. Giordana, A., Gaskill, D. K., Wickenden, D. K., Wickenden, A.Estes, J. Electronic Materials, 23(6), 509(1994)Google Scholar
9. Yung, K., Yee, J., Too, J., Rubin, M., Newman, N. and Ross, J., Appl. Phys. Lett., 64(9), 1135(1994)Google Scholar
10. Qin, L. H., Yang, K., Zheng, Y. D., Zhang, R., Dai, X. J., Fen, D., Huang, Z. C. and Chen, J. C., Chinese Phys. Lett., 13(2), 153(1996)Google Scholar
11. Aspnes, D. E., Surf. Sci., 37, 418(1973)Google Scholar
12. Swanepoel, R., J. Phys. E: Sci. Instrum., 16, 1214(1983)Google Scholar
13. Kozawa, T., Koide, N. et al., J. Appl. Phys., 75 (2), 1098(1994)Google Scholar