Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T19:27:42.216Z Has data issue: false hasContentIssue false

Optical Characterization of AlxGal-xsb/GaSb Epitaxial Layers

Published online by Cambridge University Press:  15 February 2011

S. Di Lernia
Affiliation:
INFM-Dipartimento di Fisica “A. Volta”, Università di Pavia, Via Bassi 6, I-27100 Pavia, Italy
M. Geddo
Affiliation:
INFM-Dipartimento di Fisica “A. Volta”, Università di Pavia, Via Bassi 6, I-27100 Pavia, Italy
G. Guizzetti
Affiliation:
INFM-Dipartimento di Fisica “A. Volta”, Università di Pavia, Via Bassi 6, I-27100 Pavia, Italy
M. Patrini
Affiliation:
INFM-Dipartimento di Fisica “A. Volta”, Università di Pavia, Via Bassi 6, I-27100 Pavia, Italy
A. Bosacchi
Affiliation:
Istituto CNR-MASPEC, Via Chiavari 18, I-43100 Parma, Italy
S. Franchi
Affiliation:
Istituto CNR-MASPEC, Via Chiavari 18, I-43100 Parma, Italy
R. Magnaninia
Affiliation:
Dipartimento di Fisica, UniversitA di Parma, Viale delle Scienze, I-43100 Parma, Italy
Get access

Abstract

Spectroscopic ellipsometry from 1.4 to 5 eV was used to systematically characterize epitaxial heterostructures AlxGa1-xSb/GaSb for different x concentrations (x≤0.5). The structures were grown by MBE at temperatures and beam equivalent pressure ratios which optimize their lowtemperature photoluminescence properties. Complex dielectric functions of AlxGa1-xSb versus x were derived, for the first time, from the ellipsometric spectra after mathematically removing the oxide overlayer effects. The spectra were analyzed with their second energyderivatives in term of standard analytical lineshapes: in particular the El, E11 and E2 critical point energies, broadening and amplitude parameters were derived as a function of x. On this basis we verified that the energy-shift model is appropriate to interpolate for any x≤0.5, thus allowing a nondestructive optical diagnostic of layer thickness and composition of epitaxial heterostructures based on A1xGa1-xSb.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Le, H.Q., Turner, G.W., Eglash, S.J., Choi, H.K., and Coppeta, D.A., Appl. Phys. Lett. 64, 152 (1994).Google Scholar
2. Zhang, D.Y., Baruch, N., and Wang, W.I., Appl. Phys. Lett. 63, 1068 (1993).Google Scholar
3. Aspnes, D.E. and Studna, A.A., Phys. Rev. B 27, 985 (1983).Google Scholar
4. Zollner, S., Lin, C., Schönherr, E., Böhrenger, A., and Cardona, M., J. Appl. Phys. 66, 383 (1989).Google Scholar
5. Alibert, C., Joullié, A., Joullié, A.M., and Ance, C., Phys. Rev. B 27,4946 (1983).Google Scholar
6. Bosacchi, A, Franchi, S, Magnanini, R, to be published.Google Scholar
7. Bosacchi, A, Franchi, S, Allegri, P, Avanzini, V, Baraldi, A, Ghezzi, C., Magnanini, R, Parisini, A, Tarricone, L, J. Crystal Growth 150, 844 (1995)Google Scholar
8. Aspnes, D.E., Schwartz, B., Studna, A.A., Derick, L., and Koszi, L.A., J. Appl. Phys. 48, 3510 (1977).Google Scholar
9. Aspnes, D.E., Surf. Sci. 56, 322 (1976).Google Scholar
10. Kim, C.C., Garland, J.W., Abad, H., and Raccah, P.M., Phys. Rev. B 45, 11749 (1992).Google Scholar
11. Aspnes, D.E. and Arwin, H., J. Opt. Soc. Am. 73, 1759 (1983).Google Scholar
12. Savitzky, A. and Golay, M., Anal. Chem. 36, 1627 (1964).Google Scholar
13. Adachi, S., Phys. Rev. B 35, 7454 (1987).Google Scholar
14. Snyder, P.G., Woollam, J.A., Alterovitz, S.A., and Johs, B., J. Appl. hys. 68, 5925 (1990).Google Scholar
15. Braunstein, R. and Kane, E.O., J. Phys. Chem. Solids 23, 1423 (1962).Google Scholar