Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:33:23.344Z Has data issue: false hasContentIssue false

Optical Characterization of a One-Dimensional Array of Narrow Antiwires

Published online by Cambridge University Press:  21 February 2011

D. Huang
Affiliation:
Department of Electrical & Computer Engineering, Wayne State University, Detroit, MI 48202
G. Gumbs
Affiliation:
Department of Physics and Astronomy, Hunter College City University of New York, 695 Park Avenue, New York, NY 10021
V. Fessatidis
Affiliation:
Department of Physics, Fordham University, Bronx, NY 10458
N.J.M. Horing
Affiliation:
Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030
Get access

Abstract

We present a self-consistent field theory for the infrared absorption coefficient of a simple model of an array of narrow antiwires in an external magnetic field. A detailed study is made of the way in which the collective modes change from a cyclotron mode when the confining potential is weak, to tunneling coupled modes for intermediate antiwire potential strength, and then to edge and ID lattice magnetoplasmon modes for strong potentials. By using incident light with tunable frequencies in the interband excitation regime, contactless photoreflectance measurements may be carried out and the data compared with our calculations. By fitting the numerical results to the peak positions of the photoreflectance spectrum, the number of electrons in each wire may be extracted.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 von Klitzing, K., Dorda, G., and Pepper, M., Phys. Rev. Lett. 45, 494 (1980).Google Scholar
2 Roukes, M. L., et al. Phys. Rev. Lett. 59, 3011 (1987).Google Scholar
3 Weiss, D., von Klitzing, K., Ploog, K., and Weimann, G., Europhys. Lett. 8, 179 (1989). See also High Magnetic Fields in Semiconductor Physics II, edited by G. Landwehr, Springer Series in Solid State Sciences Vol. 87 (Springer-Verla.g, Berlin, 1989), p. 357.Google Scholar
4 Alves, E. S., et al. , J. Phys.: Condens. Matter, 1, 8257 (1989).Google Scholar
5 van Wees, B. J., et al. , Phys. Rev. Lett. 60, 848 (1988).Google Scholar
6 Solomon, P. M., Price, P. J., Frank, D. J., and La Tulipe, D. C., Phys. Rev. Lett. 63, 2508 (1989).Google Scholar
7 Gramila, T., Eisenstein, J., MacDonald, A. H., Pfeiffer, L. N., and West, K. W., Phys. Rev. Lett. 66, 1216 (1991).Google Scholar
8 Eisenstein, J. P., Superl. and Microstr. 12, 107 (1992).Google Scholar
9 Hansen, W., Hoist, M., Kotthaus, J. P., Merkt, U., Sikorski, C., and Ploog, K., Phys. Rev. Lett. 58, 2586 (1987).Google Scholar
10 Wulf, U., Kucera, J., and MacDonald, A. H., Phys. Rev. B47, 1675 (1993).Google Scholar
11 Smith, C. G., Pepper, M., Newbury, R., Ahmed, H., Hasko, D. G., Peacock, D. C., Frost, J. E. F., Ritchie, D. A., Jones, G. A. C., and Hill, G., J. Phys. Condens. Matter 2, 3405 (1990); C. G. Smith, W. Chen, M. Pepper, H. Ahmed, D. G. Hasko, D. A. Ritchie, J. E. F. Frost, and G. A. C. Jones, J. Vac. Sci. Technol. BIO, 2904 (1992).Google Scholar
12 Gerhardts, R. R., Weiss, D., and von Klitzing, K., Phys. Rev. Lett. 62, 1173 (1989); R. R. Gerhardts and C. Zhang, Phys. Rev. Lett. 64, 1473 (1990).Google Scholar
13 Beenakker, C. W. J., Phys. Rev. Lett. 62, 2020 (1989).Google Scholar
14 Winkler, R. W., et al. , Phys. Rev. Lett. 62, 1177 (1989).Google Scholar
15 Gusev, G. M., Basmaji, P., Kvon, Z. D., Litvin, L. V., Nastaushev, Y. V., and Toropov, A. I., Sol. State Commun. 85, 317 (1993).Google Scholar
16 Yin, Y., Qiang, H., Yan, D., Pollak, F. H. and Noble, T. F., (submitted to Semiconductor Science and Technology).Google Scholar
17 Gumbs, G., Huang, D., Yin, Y., Qiang, H., Yan, D., Pollak, F. H., and Noble, T. F.: Many-Body Effects in the Electromodulation Spectra of Modulation-doped Quantum Wells: Theory and Experiment, Physical Review B48 (Rapid Communications), (Accepted for publication) (1994).Google Scholar
18 Haug, A., Theoretical Solid State Physics (Pergamon, New York, 1972) Vol. 1, p. 360.Google Scholar