Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:38:18.107Z Has data issue: false hasContentIssue false

Optical characterization of a InGaN/GaN microcavity with epitaxial AlInN/GaN bottom DBR

Published online by Cambridge University Press:  16 January 2012

A. Franke
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
B. Bastek
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
S. Sterling
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
O. August
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
S. Petzold
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
P. Veit
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
J. Christen
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
P. Moser
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
M. Wieneke
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
C. Berger
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
J. Bläsing
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
A. Dadgar
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
A. Krost
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
Get access

Abstract

Resonant coupling of an optical mode confined within a microcavity and an emitter is the basic prerequisite for the observation of Bose-Einstein condensation phenomena and the development of novel optical devices based on cavity polaritons.

We demonstrate highly spatially resolved 2” wafer characterization of the reflectivity and emission properties of a nitride based multi quantum well semi microcavity (i.e. structure without top Bragg reflector) to verify resonant regions. Photoluminescence and reflectivity spectra recorded at the same positions on the wafer exhibit a strong spatial dependence of the multi quantum well emission and the center wavelength of the stop band of the bottom Bragg reflector across the sample. Resonance, i.e., matching of the emission and the center wavelength of the stop band, is found in a region 8 mm off the center of the wafer.

The thickness profile across the AlInN/GaN Bragg reflector and multi quantum well layers was obtained by x-ray mappings over the full wafer. A perfect correlation between the local optical properties and the x-ray thickness distribution is found. Additional transmission electron microscopy investigations indicate a complete crack free structure and smooth interfaces between the layers within the Bragg reflector making the structure appropriate for strong coupling applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wierer, J.J., Krames, M.R., Epler, J.E., Gardner, N. F., and Craford, M.G. Appl. Phys. Lett. 84, 3885 (2004)Google Scholar
[2] Cuong, T.V., Cheong, H.S., Kim, H.G., Kim, H.Y., Hong, C.-H., and Suh, E.K., Appl. Phys. Lett. 90, 131107 (2007)Google Scholar
[3] Kim, J.K., Noemaun, A.N., Mont, F.W., Meyaard, D., Schubert, E. F., Poxson, D.J., Kim, H., Sone, C., and Park, Y., Appl. Phys. Lett. 93, 221111 (2008)Google Scholar
[4] Carlin, J.-F., Zellweger, C., Dorsaz, J., Nicolay, S., Christmann, G., Feltin, E., Butté, R., and Grandjean, N., phys. stat. sol. (b) 242, 11, 2326-2344 (2005)Google Scholar
[5] Houdre, R., Stanley, R.P., Oesterle, U., Ilegems, M., and Weisbuch, C., Phys. Rev. B 49, 16761 (1994)Google Scholar
[6] Imamoglu, A., Ram, R.J., Pau, S., Yamamoto, Y., Phys. Rev. A 53, 4250 (1996)Google Scholar
[7] Malpuech, G., Di Carlo, A., Kavokin, A., Baumberg, J.J., Zamfirescu, M., Lugli, P., Appl. Phys. Lett. 81, 412 (2002)Google Scholar
[8] Christopoulos, S., Baldassarri, G., Högersthal, H. v., Grundy, A. J. D., Lagoudakis, P. G., Kavokin, A. V., Baumberg, J. J., Christmann, G., Butte, R., Feltin, E., Carlin, J.-F., Grandjean, N., Phys. Rev. Lett. 98, 126405 (2007)Google Scholar
[9] Christmann, G., Butte, R., Feltin, E., Carlin, J.-F., and Grandjean, N., Appl. Phys. Lett. 93, 051102 (2008)Google Scholar
[10] Krost, A., Blaesing, J., Mater. Sci. Eng. A 524 (2009) 82 Google Scholar
[11] Berger, C., Moser, P., Dadgar, A., Bläsing, J., Clos, R., Krost, A., Mater. Sci. Eng. A 528 (2010) 5864 Google Scholar
[12] Krost, A., Berger, C., Bläsing, J., Franke, A., Hempel, T., Dadgar, A., and Christen, J., Appl. Phys. Lett. 97, 181105 (2010)Google Scholar