Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:41:00.399Z Has data issue: false hasContentIssue false

Optical and Morphological Characterization of PTCDI-C13

Published online by Cambridge University Press:  01 February 2011

Marco Stella
Affiliation:
[email protected], Universitat de Barcelona, Física Aplicada i Òptica, Barcelona, 08028, Spain
Fernando Villar
Affiliation:
[email protected], Universitat de Barcelona, Física Aplicada i Òptica, Barcelona, 08028, Spain
Fredy Enrique Rojas
Affiliation:
[email protected], Universitat de Barcelona, Física Aplicada i Òptica, Barcelona, 08028, Spain
Mónica Della Pirriera
Affiliation:
[email protected], Universitat Politècnica de Catalunya, Enginyeria Electrònica, Barcelona, 08034, Spain
Cristobal Voz
Affiliation:
[email protected], Universitat Politècnica de Catalunya, Enginyeria Electrònica, Barcelona, 08034, Spain
Joaquim Puigdollers
Affiliation:
[email protected], Universitat Politècnica de Catalunya, Enginyeria Electrònica, Campus Nord, edifici C4, C. Gran Capità, Barcelona, 08034, Spain
José Miguel Asensi
Affiliation:
[email protected], Universitat de Barcelona, Física Aplicada i Òptica, Barcelona, 08028, Spain
Jordi Andreu
Affiliation:
[email protected], Universitat de Barcelona, Física Aplicada i Òptica, Barcelona, 08028, Spain
Joan Bertomeu
Affiliation:
[email protected], Universitat de Barcelona, Física Aplicada i Òptica, Barcelona, 08028, Spain
Get access

Abstract

The organic photovoltaic technology has developed much in the last few years thanks to the optimization of the solar cell geometry and, specially, to the research for new performing materials. Nevertheless, much work has still to be done in order to better know the real mechanisms regulating the function of such novel class of semiconductors. The study of thin-film micro-structure, and the influence of the deposition parameters on it, is an important issue in order to obtain best optical and electrical properties. Thermal evaporation in high-vacuum chambers is the more suitable deposition technique to obtain organic thin-films with well organize molecular structure. Deposition parameters such as the substrate temperature and deposition rate may have some important effect on the molecules ordering. In this paper the effects of substrate temperature on structural and optical properties have been studied for N,N′-ditridecyl perylene diimide (PTCDI-C13) thin-films. Four samples have been deposited at 30, 60, 90 and 120°C substrate temperature and their absorption has been investigated by photothermal deflection spectroscopy (PDS) and transmittance spectroscopy. Moreover, simulations of the transmittance spectra have been calculated in order to obtain the optical constants n and k. Finally atomic force microscopy (AFM) has been employed to analyze the superficial morphology of the thin-films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brabec, C.J. Sariciftci, N.S. and Hummelen, J.C. Adv. Funct. Mater. 11, 15 (2001).Google Scholar
2. Nunzi, J.M. C.R. Physique 3, 523 (2002).Google Scholar
3. Hoppe, H. and Sariciftci, N.S. J. Mater. Res. 19, 1924 (2004).Google Scholar
4. Peumans, P. Yakimov, A. and Forrest, S. R. J. Appl. Phys. 93, 3693 (2003).Google Scholar
5. Heutz, S. Ferguson, A.J. Rumbles, G. and Jones, T.S. Organic Electronics 3, 119 (2002).Google Scholar
6. Nollau, A. Hoffmann, M. Fritz, T. and Leo, K. Thin Solid Films 368, 130 (2000).Google Scholar
7. Malenfant, P.R.L. Dimitrakopoulos, C.D. Gelorme, J.D. Kosbar, L.L. Graham, T.O. Curioni, A and Andreoni, Wanda, Appl. Phys. Lett. 80 2517 (2002).Google Scholar
8. Horowitz, G. Kouki, F. Spearman, P. Fichou, D. Nogues, C. Pan, X. and Garnier, F. Adv. Mater. 8, 242 (1996).Google Scholar
9. Tatemichi, S. Ichikawa, M. Koyama, T. and Taniguchi, Y. Appl. Phys. Lett. 89, 112108 (2006).Google Scholar
10. El-Nahass, M. M., Bahabri, F.S. and Al-Harbi, R., Egypt. J. Sol. 24, 11 (2001).Google Scholar
11. Varghese, S. Iype, M. Mathew, E.J. and Menon, C.S. Materials Letters 56, 1078 (2002).Google Scholar
12. Shalimova, K. V.. Semiconductors physics., Ed. , Mir (1975) p. 268.Google Scholar
13. Street, R. A.. Hydrogenated amorphous silicon., Cambridge Solid State Science Series (1991) p. 88.Google Scholar
14. Centurioni, E. Appl. Opt. 44, 7532 (2005)Google Scholar
15. Hoppe, H. Arnold, N. Sariciftci, N. S. and Meissner, D. Sol. Energy Mater. Sol. Cells 80, 105 (2003)Google Scholar
16. Born, M.. Principles of optics., Ed. Cambridge University (2003) chapter 2.Google Scholar
17. Martil, I. and Diaz, G. Gonzalez, Am. J. Phys. 60, 83 (1992).Google Scholar