Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:41:29.286Z Has data issue: false hasContentIssue false

Optical and EPR Study of Defects in Cadmium Germanium Arsenide

Published online by Cambridge University Press:  11 February 2011

Lihua Bai
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506–6315, U.S.A.
N. Y. Garces
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506–6315, U.S.A.
Nanying Yang
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506–6315, U.S.A.
P. G. Schunemann
Affiliation:
BAE Systems, Nashua, NH 03061–0868, U.S.A.
S. D. Setzler
Affiliation:
BAE Systems, Nashua, NH 03061–0868, U.S.A.
T. M. Pollak
Affiliation:
BAE Systems, Nashua, NH 03061–0868, U.S.A.
L. E. Halliburton
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506–6315, U.S.A.
N. C. Giles
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506–6315, U.S.A.
Get access

Abstract

Bulk crystals of CdGeAs2 have been characterized using photoluminescence (PL), optical absorption, Hall effect, and electron paramagnetic resonance (EPR) techniques. An absorption band near 5.5 microns at room temperature is observed in all of the p-type samples we have studied. A correlation between the magnitude of this optical absorption and the excess hole concentration at room temperature is established. Also, an EPR signal is found to correlate with the strength of this absorption band. PL data are consistent with an increased concentration of shallow acceptors being present in high-absorption samples. From the EPR data, we suggest that a model for the paramagnetic defect associated with the absorption at 5.5 microns may be an acceptor on an anion site.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vodopyanov, K. L. and Schunemann, P. G., Optics Letters 23, 1096 (1998).Google Scholar
2. Schunemann, P. G., Setzler, S. D., and Pollak, T. M., in: Conf. on Lasers and Electro-Optics, CLEO 2000, Vol. 39, 355 (2000).Google Scholar
3. Vodopyanov, K. L., Knippels, G. M. H., van der Meer, A. F. G., Maffetone, J. P., and Zwieback, I., Optics Communications 202, 205 (2002).Google Scholar
4. Mamedov, B. Kh. and Osmanov, É. O., Sov. Phys.-Semicond. 5 1120 (1972).Google Scholar
5. Zwieback, I., Perlov, D., Maffetone, J. P., and Ruderman, W., Appl. Phys. Lett. 73, 2185 (1998).Google Scholar
6. Halliburton, L. E., Edwards, G. J., Schunemann, P. G., and Pollak, T. M., J. Appl. Phys. 77, 435 (1995).Google Scholar
7. McCrae, J. E., Hengehold, R. L., Yeo, Y. K., Ohmer, M. C., and Schunemann, P. G., Appl. Phys. Lett. 70, 455 (1997).Google Scholar
8. Aufgang, J. B., Labrie, D., Olson, K., Paton, B., Simpson, A. M., Iseler, G. W., and Borsh-chevsky, A., Semicond. Sci. Technol. 12, 1257 (1997).Google Scholar
9. Fischer, D. W., Ohmer, M. C., and McCrae, J. E., J. Appl. Phys. 81, 3579 (1997).Google Scholar
10. Ptak, A. J., Jain, S., Stevens, K. T., Myers, T. H., Schunemann, P. G., Setzler, S. D., and Pollak, T. M. in Infrared Applications of Semiconductors III, edited by Manasreh, M. O., Stadler, B. J. H., Ferguson, I., and Zhang, Y.-H. (Mater. Res. Soc. Proc. 607, 427 (2000).Google Scholar