Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-10-04T04:41:49.127Z Has data issue: false hasContentIssue false

Optical and Electronic Properties of Metal-containing Poly-ynes and their Organic Precursors

Published online by Cambridge University Press:  01 February 2011

Marek Jura
Affiliation:
Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.
Olivia F. Koentjoro
Affiliation:
Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.
Paul R. Raithby
Affiliation:
Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.
Emma L. Sharp
Affiliation:
Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.
Paul J. Wilson
Affiliation:
Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.
Get access

Abstract

A series of platinum(II) di-yne complexes with the general formula [PhPt(PR3)2-C≡C-X-C≡C-Pt(PR3)2Ph] where R = Et, nBu and X = a range of extended hetero-aromatic spacer groups, have been prepared by the coupling reaction between two molar equivalents of [PhPt(PR3)2Cl] and one molar equivalent of the terminal dialkyne, HC≡C-X-C≡CH, in the presence of CuI catalyst. The complexes have been characterised by IR, NMR and optical spectroscopy. These materials, which are precursors to related platinum(II) poly-yne polymers, have been specifically designed to be incorporated into metal-molecule-metal junctions in nanoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burroughs, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L., and Holmes, A. B., Nature 347 539 (1990).Google Scholar
2. Tessler, N., Denton, G. J., and Friend, R. H., Nature 382 695 (1996).Google Scholar
3. Meier, H., Angew. Chem. Int. Ed. Engl. 31 1399 (1992).Google Scholar
4. Kraft, A., Grimsdale, A. C., and Holmes, A. B., Angew. Chem. Int. Ed. 37 403 (1998);Google Scholar
Montali, A., Smith, P., and Weder, C., Synth. Met. 97 123 (1998).Google Scholar
5. Swager, T. M., Acc. Chem. Res. 31 201 (1998);Google Scholar
McQuade, D. T., Pullen, A. E., and Swager, T. M., Chem. Rev. 100 2537 (2000).Google Scholar
6. Das-Gupta, D. K. in Introduction to Molecular Electronics, edited by Petty, M. C., Bryce, M. R. and Bloor, D. (Edward Arnold, London, 1995) pp. 4771.Google Scholar
7. Bleier, H. in Organic Materials for Photonics, edited by Zerbi, G. (Elsevier, Amsterdam, 1993) pp. 77101;Google Scholar
Loutfy, R. O., Hor, A.-M., Hsiao, C.-K., Baranyi, G., and Kazmaier, P., Pure Appl. Chem. 60 1047 (1988).Google Scholar
8. Feringa, L., Jager, W. F. and de Lange, B., Tetrahedron 49 8267 (1993);Google Scholar
Buning, G. H. W. in Organic Materials for Photonics, edited by Zerbi, G. (Elsevier, Amsterdam, 1993) pp. 367397.Google Scholar
9. Lösch, K., Macromol. Symp. 100 65 (1995);Google Scholar
Lehn, J.-M.. Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, 1995) pp. 124138;Google Scholar
Martin, P. J. in Introduction to Molecular Electronics, edited by Petty, M. C., Bryce, M. R. and Bloor, D. (Edward Arnold, London, 1995) pp. 112141;Google Scholar
Kim, J.-J. and Lee, E.-H., Mol. Cryst. Liq. Cryst 227 71 (1993);Google Scholar
Durr, H., Angew. Chem. Int. Ed. Engl. 28 413 (1989).Google Scholar
10. Heeger, A. J. and Long, J. Jr, Optics & Photonics News 7(8) 24 (1996);Google Scholar
Nalwa, H. S., in Nonlinear Optics of Organic Molecules and Polymers, edited by Nalwa, H. S. and Miyata, S. (CRC, New York, 1997) pp 611787;Google Scholar
Marder, S. R., Kippelen, B., Jen, A. K.-Y., and Peyghambarian, N., Nature 388 845 (1997).Google Scholar
11. Baldo, M. A., Thompson, M. E., and Forrest, S. R., Nature 403 750 (2000);Google Scholar
Cleave, V., Yahioglu, G., Lebarny, P., Friend, R. H., and Tessler, N., Adv. Mater. 11 285 (1999).Google Scholar
12. Liu, Y., Jiang, S., Glusac, K., Powell, D. H., Anderson, D. F., and Schanze, K. S., J. Am. Chem. Soc. 124 12412 (2002);Google Scholar
Yam, V. W-W, Acc. Chem. Res. 35 555 (2002);Google Scholar
Younus, M., Köhler, A., Cron, S., Chawdhury, N., Al-Mandhary, M.R.A., Khan, M.S., Lewis, J., Long, N.J., Friend, R.H., and Raithby, P.R., Angew. Chem. Int. Ed. Engl. 37 3036 (1998);Google Scholar
Chawdhury, N., Köhler, A., Friend, R.H., Wong, W.-Y., Younus, M., Raithby, P.R., Lewis, J., Corcoran, T.C., Al-Mandhary, M.R. A. and Khan, M.S., J. Chem. Phys. 110 4963 (1999).Google Scholar
13. Wilson, J. S., Doot, A. S., Seeley, A. J. A. B., Khan, M. S., Köhler, A., and Friend, R. H., Nature 413 828 (2001);Google Scholar
Wilson, J. S., Chawdhury, N., Köhler, A., Friend, R. H., Al-Mandhary, M. R. A., Khan, M. S., Younus, M., and Raithby, P. R., J. Am. Chem. Soc., 123 9412 (2001);Google Scholar
Beljonne, D., Wittmann, H. F., Köhler, A., Graham, S., Younus, M., Lewis, J., Raithby, P. R., Khan, M. S., Friend, R. H., and Bredas, J. L., J. Chem. Phys. 105 3868 (1996).Google Scholar
14. Baldo, M.A., O'Brien, D. F., You, Y., Shpustikov, A., Sibley, S., Thompson, M. E., and Forrest, S. R., Nature 395 151 (1998).Google Scholar
15. Staromlynska, J., McKay, T. J., Boljer, A. J., and Davy, J. R., J. Opt. Soc. Am. B-Opt. Phys. 15 1731 (1998).Google Scholar
16. Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Hisham, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., Köhler, A., Feeder, N., and Teat, S. J., J. Chem. Soc., Dalton Trans. 1358 (2002);Google Scholar
Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Feeder, N., Nahar, S., Köhler, A., Friend, R. H., Wilson, P. J. and Raithby, P. R., J. Chem. Soc., Dalton Trans. 2441 (2002);Google Scholar
Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Raithby, P. R., Ahrens, B., Male, L., Friend, R. H., Köhler, A., and Wilson, J. S., Dalton Trans. 65 (2003);Google Scholar
Khan, M.S., Al-Mandhary, M.R.A., Al-Suti, M.K., Raithby, P.R., Ahrens, B., Mahon, M., Male, L., Boothby, C.E., and Köhler, A., Dalton Trans. 74 (2003);Google Scholar
Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Al-Battashi, F. R., Al-Saadi, S., Ahrens, B., Bjernemose, J. K., Mahon, M. F., Raithby, P. R., Younus, M., Chawdhury, N., Köhler, A., Marseglia, E. A., Tedesco, E., Feeder, N., and Teat, S. J., Dalton Trans. 2377 (2004).Google Scholar
17. Wilson, J. S., Köhler, A., Friend, R. H., Al-Suti, M. K., Al-Mandhary, M. R. A., Khan, M. S. and Raithby, P.R., J. Chem. Phys. 113 7627 (2000).Google Scholar
18. Siegmann, K., Pregosin, P. S., and Venanzi, L. M., Organometallics 8 2659 (1988).Google Scholar
19. Aviram, A. and Ratner, M., Chem. Ohys. Lett. 29 277 (1974).Google Scholar
20. Chen, J., Reed, M. A., Rawlett, A. M., and Tour, J. M., Science 286 1550 (1999).Google Scholar
21. Tour, J. M., Acc. Chem. Res. 33 791 (2000);Google Scholar
Chen, J., Wang, W., Reed, M. A., Rawlett, A. M., Price, D. W., and Tour, J. M., Appl. Phys. Lett. 77 1224 (2000);Google Scholar
Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P., and Tour, J. M., Science 278 252 (1997).Google Scholar
22. Feldheim, D., Nature 408 45 (2000);Google Scholar
Walzer, K., Marx, E., Greenham, N. C., Less, R. J., Raithby, P. R., and Stokbro, K., J. Am. Chem. Soc. 126 1229 (2004).Google Scholar
23. Donhauser, Z. J., Mantooth, B. A., Kelly, K. F., Bumm, L. A., Monnell, J. D., Stapleton, J. J., Price, D. W. Jr, Rawlett, A. M., Allara, D. L., Tour, J. M., and Weiss, P. S., Science 292 2303 (2001);Google Scholar
Flatt, A. K., Dirk, S. M., Henderson, J. C., Shen, D. E., Su, J., Reed, M. A., and Tour, J. M., Tetrahedron 59(43) 8555 (2003).Google Scholar