Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T14:56:04.244Z Has data issue: false hasContentIssue false

Optical and electrical properties of Cu2O, Cu4O3 and CuO

Published online by Cambridge University Press:  11 December 2012

Daniel Reppin
Affiliation:
Institute of Experimental Physics I, Justus-Liebig-University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
Angelika Polity
Affiliation:
Institute of Experimental Physics I, Justus-Liebig-University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
Bruno K. Meyer
Affiliation:
Institute of Experimental Physics I, Justus-Liebig-University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
Sviatoslav Shokhovets
Affiliation:
Institute of Physics, Ilmenau University of Technology, Weimarer Strasse 32, 98693 Ilmenau, Germany
Get access

Abstract

We deposited copper oxides by rf magnetron sputtering from a 4N Cu-target at room temperature, varying the oxygen flux and keeping the argon flow constant. Dependent on the oxygen flux Cu2O, Cu4O3or CuO were synthesized. The different compounds were characterized by XRD. The dielectric functions of the oxides were determined by spectroscopic ellipsometry and show significant differences between the compounds. The electrical properties, like the carrier concentration, of each compound can be tuned by adjusting the oxygen flux. We discuss the structural, optical and electrical properties of the copper oxides in terms of phase purity and stoichiometry deviations.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brahms, S., Nikitine, S., and Dahl, J. P., Physics Letters 22, 31 (1966).CrossRefGoogle Scholar
Malerba, C., Biccari, F., Leonor Azanza Ricardo, C., D’Incau, M., Scardi, P., and Mittiga, A., Solar Energy Materials and Solar Cells 95, 2848 (2011).CrossRefGoogle Scholar
Meyer, B. K., Polity, A., Reppin, D., Becker, M., Hering, P., Klar, P. J., Sander, T., Reindl, C., Benz, J., Eickhoff, M., Heiliger, C., Heinemann, M., Bläsing, J., Krost, A., Shokovets, S., Müller, C., and Ronning, C., Physica Status Solidi (b) 249, 14871509 (2012).CrossRefGoogle Scholar
Ching, W., Xu, Y.-N., and Wong, K., Physical Review B 40, 7684 (1989).CrossRefGoogle Scholar
Ito, T., Yamaguchi, H., Masumi, T., and Adachi, S., Journal of the Physical Society of Japan 67, 3304 (1998).CrossRefGoogle Scholar
Pierson, J. F., Thobor-Keck, A., and Billard, A., Applied Surface Science 210, 359 (2003).CrossRefGoogle Scholar
Pierson, J. F., Duverger, E., and Banakh, O., Journal of Solid State Chemistry 180, 968 (2007).CrossRefGoogle Scholar
Thobor, A. and Pierson, J. F., Materials Letters 57, 3676 (2003).CrossRefGoogle Scholar
Porat, O. and Riess, I., Solid State Ionics 74, 229 (1994).CrossRefGoogle Scholar
Porat, O. and Riess, I., Solid State Ionics 81, 29 (1995).CrossRefGoogle Scholar
Tauc, J., Grigorovici, R., and Vancu, A., Physica Status Solidi (b) 15, 627637 (1966).CrossRefGoogle Scholar
Tauc, J., Materials Research Bulletin 3, 37 (1968).CrossRefGoogle Scholar
Ito, T., Kawashima, T., Yamaguchi, H., Masumi, T., and Adachi, S., Journal of the Physical Society of Japan 67, 2125 (1998).CrossRefGoogle Scholar