Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T09:42:05.644Z Has data issue: false hasContentIssue false

Optical and Electrical Characteristics of Single-Quantum-Well InGaN Light-Emitting Diodes

Published online by Cambridge University Press:  10 February 2011

Piotr Perlin
Affiliation:
On leave from High Pressure Research Center, Warsaw, Poland
Marek Osiński
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87131–6081
Petr G Eliseev
Affiliation:
On leave from P. N. Lebedev Physics Institute, Moscow, Russia
Get access

Abstract

We have studied the electroluminescence and photoluminescence of Nichia single-quantum-well Al0.2Ga0.8N/In0.45Ga0.55N/GaN green light-emitting diodes over a broad range of temperatures (15-300 K) and currents (0.2 μA - 2 A). The most striking behavior is an anomalous temperature shift of both photo- and electroluminescence, with the emission peak moving towards higher energies with increasing temperature. This blue shift is opposite to that of the energy gap of the active layer, which practically excludes interband transitions as responsible for the observed optical transitions. We suggest that population effects within the band tails can account for the observed anomaly. We also determined that the current flowing through the p-n junction is dominated by carrier tunneling, the omnipresent effect in the GaN-based optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).Google Scholar
2. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys. 34, p. LI332 (1995).Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y., Jpn. J. Appl. Phys. 35, p. L74 (1996).Google Scholar
4. Lester, S. D., Ponce, F. A., Craford, M. G., and Steigerwald, D. A., Appl. Phys. Lett. 66, p. 1249(1995).Google Scholar
5. Osamura, K., Naka, S., and Murakami, Y., J. Appl. Phys. 46, p. 3422 (1975).Google Scholar
6. Zolina, K. G., Kudryashov, V. E., Turkin, A. N., Yunovich, A. E., and Nakamura, S., MRS Internet J. Nitride Semicond. Res. 1, p. 11 (1996).Google Scholar
7. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., in Proc. of 38th Electronic Materials Conf.. UC Santa Barbara, June 1996.Google Scholar
8. Zeller, J., Eliseev, P. G., Sartori, P., Perlin, P., and Osinski, M., Gallium Nitride and Related Materials, edited by Ponce, F. A., Dupuis, R. D., Nakamura, S., and Edmond, J. A. (Mater. Res. Soc. Proc. 395, Pittsburgh, PA 1996), p. 937942.Google Scholar
9. Perlin, P., Osiński, M., Eliseev, P. G., Smagley, V. A., Mu, J., Banas, M., and Sartori, P., Appl. Phys. Lett. 69, p. 1680 (1996).Google Scholar
10. Eliseev, P. G., Perlin, P., and Osiński, M., to be published.Google Scholar