Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:05:43.855Z Has data issue: false hasContentIssue false

A One-Dimensional Stochastic Model of Diamond Growth

Published online by Cambridge University Press:  21 February 2011

Michael Frenklach*
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740
Get access

Abstract

(1+1)-dimensional stochastic simulations were performed representing elementary processes underlying chemical vapor deposition of diamond films. The results exhibit different growth regimes, depending on the values assigned to kinetic rates, and generally support the critical role of surface migration suggested earlier for the growth of diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yoder, M., in Synthetic Diamond: Emerging CVD Science and Technology, edited by Spear, K. E. and Dismukes, J. P. (Wiley, New York, 1994), p. 3.Google Scholar
2 Piano, M. A., Moyer, M. D., Moreno, M. M., Black, D., Burdette, H., Robins, L., Pan, L. S., Kania, D. R., and Banholzer, W., in Diamond, SiC and Nitride Wide Bandgap Semiconductors, edited by Carter, C. H. Jr., Gildenblat, G., Nakamura, S. and Nemanich, R. J. (Materials Research Society, Pittsburgh, Pennsylvania, 1994), p. 307.Google Scholar
3 Wild, Ch., Herres, N., and Koidl, P., J. Appl. Phys. 68, 973 (1990).Google Scholar
4 Ravi, K. V., J. Mater. Res. 7, 384 (1992).Google Scholar
5 van Enckevort, W. J. P., Janssen, G., Vollenberg, W., Schermer, J. J., and Giling, L. J., Diam. Relat. Mater. 2, 997 (1993).Google Scholar
6 Garrison, B. J., Dawnkaski, E. J., Srivastava, D., and Brenner, D. W., Science 255, 835 (1992).Google Scholar
7 Harris, S. J. and Goodwin, D. G., J. Phys. Chem. 97, 23 (1993).Google Scholar
8 Zhu, M., Hauge, R. H., Margrave, J. L., and D’Evelyn, M. P., p. 138 in Ref. 2.Google Scholar
9 Skokov, S., Weiner, B., and Frenklach, M., J. Phys. Chem. 98, 8 (1994); 98, 7073 (1994); 99, 5616 (1995).Google Scholar
10 Frenklach, M., Skokov, S., and Weiner, B., Nature 372, 535 (1994).Google Scholar
11 Skokov, S., Weiner, B., Frenklach, M., Frauenheim, Th., and Sternberg, M., Phys. Rev. B. 52, 5426 (1995).Google Scholar
12 Gillespie, D. T., J. Comput. Phys. 22, 403 (1976);J. Phys. Chem. 81, 2340 (1977); J. Stat. Phys. 16, 311 (1977); Markov Processes: An Introduction for Physical Scientists (Academic, San Diego, California, 1992).Google Scholar
13 Fichthorn, K. A. and Weinberg, W. H., J. Chem. Phys. 95, 971 (1991).Google Scholar
14 Frenklach, M., Phys. Rev. B 45, 9455 (1992); J. Chem. Phys. 97, 5794 (1992).Google Scholar
15 Kardar, M., Parisi, G., and Zhang, Y. C., Phys. Rev. Lett. 56, 889 (1986).Google Scholar
16 Sneppen, K., Phys. Rev. Lett. 69, 3539 (1992).Google Scholar
17 For recent reviews, see Barabási, A.-L. and Stanley, H. E., Fractal Concepts in Surface Growth (Cambridge University, 1995); and A. Zangwell, in Microstructural Evolution of Thin Films, edited by Atwater, H. A. and Thompson, C. V.(Academic, New York, 1995), in press.Google Scholar
18 Zuiker, C. D., Gruen, D. M., and Krauss, A. R., Mater. Res. Soc. Bull., May 1995, p. 29.Google Scholar
19 Stallcup, R. E., Aviles, A. F., and Perez, J. M., Appl. Phys. Lett. 66, 2331 (1995).Google Scholar
20 Howard, W., Spear, K., and Frenklach, M., in Proceedings of the Fourth International Symposium on Diamond Materials, edited by Ravi, K. V. and Dismukes, J. P. (Electrochemical Society, Pennigton, N.J., 1995), p.656.Google Scholar