Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:46:10.711Z Has data issue: false hasContentIssue false

On the Unzipping Mechanisms of Carbon Nanotubes: Insights from Reactive Molecular Dynamics Simulations

Published online by Cambridge University Press:  30 July 2012

Ricardo P. dos Santos
Affiliation:
Physics Department, IGCE, Universidade Estadual Paulista, UNESP, 13506-900, Rio Claro, SP, Brazil.
Pedro A. Autreto
Affiliation:
Applied Physics, State University of Campinas, 13083-970, Campinas, São Paulo, Brazil.
Eric Perim
Affiliation:
Applied Physics, State University of Campinas, 13083-970, Campinas, São Paulo, Brazil.
Gustavo Brunetto
Affiliation:
Applied Physics, State University of Campinas, 13083-970, Campinas, São Paulo, Brazil.
Douglas S. Galvao
Affiliation:
Applied Physics, State University of Campinas, 13083-970, Campinas, São Paulo, Brazil.
Get access

Abstract

Unzipping carbon nanotubes (CNTs) is considered one of the most promising approaches for the controlled and large-scale production of graphene nanoribbons (GNR). These structures are considered of great importance for the development of nanoelectronics because of its dimensions and intrinsic nonzero band gap value. Despite many years of investigations some details on the dynamics of the CNT fracture/unzipping processes remain unclear. In this work we have investigated some of these process through molecular dynamics simulations using reactive force fields (ReaxFF), as implemented in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. We considered multi-walled CNTs of different dimensions and chiralities and under induced mechanical stretching. Our preliminary results show that the unzipping mechanisms are highly dependent on CNT chirality. Well-defined and distinct fracture patterns were observed for the different chiralities. Armchair CNTs favor the creation of GNRs with well-defined armchair edges, while zigzag and chiral ones produce GNRs with less defined and defective edges.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Castro Neto, A. H., Peres, N. M. R., Novoselov, K. S., and Geim, A. K., Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Withers, F., Bointon, T. H., Dubois, M., Russo, S., and Craciun, M. F., Nano Lett. 11, 3912 (2011).CrossRefGoogle Scholar
Flores, M. Z. S., Autreto, P. A. S., Legoas, S. B., and Galvao, D. S., Nanotechnology 20, 465704 (2009).CrossRefGoogle Scholar
Cheng, S. H., Zou, K., Okino, F., Gutierrez, H. R., Gupta, A., Shen, N., Eklund, P. C., Sofo, J. O., and Zhu, J., Phys. Rev. B 81, 205435 (2010).CrossRefGoogle Scholar
Sofo, J., Chaudhari, A. and Barber, G., Phys. Rev. B, 75, 153401 (2007).CrossRefGoogle Scholar
Nair, R. R., Ren, W., Jalil, R., Riaz, I., Kravets, V. G., Britnell, L., Blake, P., Schedin, F., Mayorov, A. S., Yuan, S., Katsnelson, M. I., Cheng, H.-M., Strupinski, W., Bulusheva, L. G., Okotrub, A. V., Grigorieva, I. V., Grigorenko, A. N., Novoselov, K. S., and Geim, A. K., Small 6, 2877 (2010).CrossRefGoogle Scholar
Nakada, K., Fujita, M., Dresselhaus, G., and Dresselhaus, M., Phys. Rev. B 54, 17954 (1996).CrossRefGoogle Scholar
Jiao, L., Zhang, L., Wang, X., Diankov, G., and Dai, H., Nature 458, 877 (2009).CrossRefGoogle Scholar
Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., and Tour, J. M., Nature 458, 872 (2009).CrossRefGoogle Scholar
Kim, K., Artyukhov, V. I., Regan, W., Liu, Y., Crommie, M. F., Yakobson, B. I., and Zettl, A., Nano Lett. 12, 293 (2012).CrossRefGoogle Scholar
Tang, C., Guo, W., and Chen, C., Phys. Rev. B 83, (2011).Google Scholar
van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A., J. Phys. Chem. A 105, 9396 (2001).CrossRefGoogle Scholar
Plimpton, S., J. Comp. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Zang, A., Stephansson, O., Zang, A., and Stephansson, O., Stress Field of the Earth’S Crust (Springer Netherlands, Dordrecht, 2010).CrossRefGoogle Scholar
Jin, C., Lan, H., Peng, L., Suenaga, K., and Iijima, S., Phys. Rev. Lett. 102, 205501 (2009).CrossRefGoogle Scholar
Fogden, S., Howard, C. A., Heenan, R. K., Skipper, N. T., and Shaffer, M. S. P., ACS Nano 6, 54 (2012).CrossRefGoogle Scholar
Zhang, H., Zhao, M., He, T., Zhang, X., Wang, Z., Xi, Z., Yan, S., Liu, X., Xia, Y., and Mei, L., Phys Chem Chem Phys 12, 13674 (2010).CrossRefGoogle Scholar
Rangel, N. L., Sotelo, J. C., and Seminario, J. M., J Chem Phys 131, 031105 (2009).CrossRefGoogle Scholar