Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T20:48:45.142Z Has data issue: false hasContentIssue false

On the Resistive State of High Temperature Superconductors in Magnetic Field

Published online by Cambridge University Press:  28 February 2011

Y. Iye
Affiliation:
The Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato‐ku, Tokyo 106 Japan
S. Nakamura
Affiliation:
The Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato‐ku, Tokyo 106 Japan
T. Tamegai
Affiliation:
The Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato‐ku, Tokyo 106 Japan
T. Terashima
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611 Japan
Y. Bando
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611 Japan
Get access

Abstract

Experimental studies of the resistive state of high temperature superconductors in the mixed state were carried out on thin film samples of YBa2Cu3O7‐y and Bi2Sr2CaCu2Os+y. Precise angular dependence measurements on Yba2Cu3O7‐y epitaxial film have revealed not only the critical field anisotropy with respect to the a, b, and c‐axes but also a feature associated with twin boundaries. Dependence on the angle between the transport current and the magnetic field is investigated and discussed in terms of flux dynamics in highly anisotropic layered superconductors. Peculiar behavior of the Hall effect in the resistive state is reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Iye, Y., Nakamura, S. and Tamegai, T., Physica C159 (1989) 433.Google Scholar
2 Iye, Y., Nakamura, S. and Tamegai, T., Physica C159 (1989) 616.Google Scholar
3 Iye, Y., in “Strong Correlation and Superconductivity”, eds. Fukuyama, H., Maekawa, S. and Malozemoff, A.P., (Springer, Heidelberg 1989) p.213.Google Scholar
4 Terashima, T., Iijima, K., Yamamoto, K., Bando, Y. and Mazaki, H., Jpn. J. Appl. Phys. 27 (1988) L91.Google Scholar
5 Iye, Y., Cryogenics, 28 (1988) 164.Google Scholar
6 Iye, Y., Tamegai, T., Sakakibara, T., Goto, T., Miura, N., Takeya, H. and Takei, H., Physica C153‐155 (1988) 26.Google Scholar
7 Farrell, D.E., Bonham, S., Foster, J., Chang, Y.C., Jiang, P.Z., Vandervoort, K.G., Lam, D.J. and Kogan, V.G., Phys. Rev. Lett. 63 (1989) 782.Google Scholar
8 Dolan, G.J., Holtzberg, F., Feild, C. and Dinger, T.R., Phys. Rev. Lett. 62 (1989) 2184.Google Scholar
9 Tinkham, M., Phys. Rev. Lett. 60 (1988) 1658: T.T.M.Palstra, B.Batlogg, L.F.Schneemeyer, J.V.Waszczak, Phys. Rev. Lett. 60 (1988) 1662.Google Scholar
10 Iye, Y., “Mechanisms of High Temperature Superconductivity”, eds. Kamimura, H. and Oshiyama, A., (Springer, Heidelberg, 1989) p.263.Google Scholar
11 Kitazawa, K., Kambe, S., Naito, M., Tanaka, I. and Kojima, H., Jpn. J. Appl. Phys. 28 (1989) L555.Google Scholar
12 Ikeda, R., Ohmi, T. and Tsuneto, T., J. Phys. Soc. Jpn. 58 (1989) 1377.Google Scholar
13 Campbell, A.M. and Evetts, J.E., Adv. Phys. 21 (1972) 199.Google Scholar
14 Clem, J., J. Low Temp. Phys. 38 (1980) 353.Google Scholar
15 Fukuyama, H., Ebisawa, H. and Tsuzuki, T., Prog. Theor. Phys. 46 (1971) 1028.Google Scholar