Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:42:33.759Z Has data issue: false hasContentIssue false

On The Phase Structure of the Asymmetric Three-State Potts Model

Published online by Cambridge University Press:  21 February 2011

G. v. Gehlen*
Affiliation:
Physikalisches Institut der Universität Bonn, Nussallee 12, D-5300 Bonn 1, West Germany
Get access

Abstract

Finite-size scaling is applied to the Hamiltonian version of the asymmetric Z3-Potts model. Results for the phase boundary of the commensurate region and for the corresponding critical index ν are presented. It is argued that there is no Lifshitz point, the incommensurate phase extending down to small values of the asymmetry parameter.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Domany, E. and Schick, M., Phys. Rev.B 20 (1979) 3828.Google Scholar
2. Moncton, D.E. et al. , Phys. Rev. Lett. 46 (1981) 1533.Google Scholar
3. Jaubert, M. et al. , Phys. Rev. Lett. 46(1981) 1679.Google Scholar
4. Imbihl, R. et al. , Surf. Sci. 117 (1982) 257.Google Scholar
5. Selke, W. and Fisher, M.E., Phys. Rev. Lett. 44 (1980) 1502.Google Scholar
6. Ostlund, S., Phys. Rev. B 24 (1981) 398.Google Scholar
7. Huse, D.A., Phys. Rev. B 24 (1981) 5180.Google Scholar
8. Centen, P. et al. , Nuclear Phys. B 205 (1982) 585.Google Scholar
9. Selke, W. and Yeomans, J.M., Z. Phys. B 46 (1982) 331.Google Scholar
10. Howes, S.F., Phys. Rev. B 27 (1983) 1762.Google Scholar
11. Schulz, H.J., preprint SP. 82176.Google Scholar
12. Hornreich, R.M. et al. , Phys. Rev. Lett. 35 (1975) 1678.Google Scholar
13. Huse, D.A. and Fisher, M.E., Phys. Rev. Lett. 49 (1982) 793.Google Scholar
14. Gehlen, G. v. and Rittenberg, V., Bonn preprint HE-83–3.Google Scholar
15. Fradkin, E. and Susskind, L., Phys. Rev. B 17 (1978) 2637.Google Scholar
16. Kogut, J., Rev. Mod. Phys. 51 (1979) 659, see also the Appendix ofGoogle Scholar
16a Regev, A., Marcu, M., and Rittenberg, V., J. Math. Phys. 22 (1981) 2740.Google Scholar
17. Fisher, M.E., Critical Phenomena, in Proc. Enrica Fermi Intern, School of Physics, ed. Green, M.S. (Academic Press, N.Y. 1971).Google Scholar
18. Hamer, C.J. and Barber, M.N., J. Phys. B 13 (1980) L169, A14 (1981) 241.Google Scholar
19. Nightingale, P., J. Appl. Phys. 53 (1982) 7927.Google Scholar
20. Elitzur, S. et al. , Phys. Rev. D 19 (1979) 3698.Google Scholar
21. Hamer, C.J. and Barber, M.N., J. Phys. A 14 (1981) 2009.Google Scholar
22. Blöte, H.W.J. and Nightingale, M.P., Physica 112A (1982) 405.Google Scholar
23. Niemeyer, Th., Physica 36 (1967) 377.Google Scholar