Published online by Cambridge University Press: 26 February 2011
Rapid Thermal Annealing (RTA) effects on generation or annihilation of deep levels in GaAs have been investigated by Deep Level Transient Spectroscopy (DLTS). Capping proximity technique using three annealing configurations are employed to anneal Liquid Encapsulated Czochralski (LEC) and Bridgman (B) substrates, or Vapor Phase Epitaxy (VPE) and Liquid Phase Epitaxy (LPE) layers. The RTA treatment is performed from 800 to 950°C for two annealing times ( 3 and 10s).
The DLTS data show that the evolution of the native defects depends on the GaAs growth method and also the annealing configuration. We observe the appearance of two new electron traps named RL1 and RL2 induced by the RTA process which depend on the kind of substrate: RL1 and RL2 are created in LEC material while only RL1 is detected in B material. A general comparison of our results with others reported in the literature show that these new electron traps are related to the change of stoichiometry at the GaAs surface and also depend on the existence of specific native defects in the starting GaAs material. It is proposed that the creation of RL1 is related to the EL6 native defect and discuss a possible physical origin for this level. We also propose that RL2 and EL5 originate from the same defect and suggest the divacancy VGaVAs as a possible origin for this trap.