Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:27:48.799Z Has data issue: false hasContentIssue false

On the Origin of the Contrast Inhomogeneities Found on In0.52Al0.48As Layers Grown on InP Substrates At High Temperatures

Published online by Cambridge University Press:  25 February 2011

F. Peiro
Affiliation:
LCMM. Dept. Física Aplicada i Electrònica. U. Barcelona. Diagonal 645–647. 08028 Barcelona, Spain. Serveis Científico-Tècnics. U. Barcelona. L. Solé i Sabarís, 1–3. 08028 Barcelona, Spain.
A. Cornet
Affiliation:
LCMM. Dept. Física Aplicada i Electrònica. U. Barcelona. Diagonal 645–647. 08028 Barcelona, Spain.
J. R. Morante
Affiliation:
LCMM. Dept. Física Aplicada i Electrònica. U. Barcelona. Diagonal 645–647. 08028 Barcelona, Spain.
A. Georgakilas
Affiliation:
CALCE. Electr. Pack. Research Center, Univ. Maryland, College Park, MD 20742., USA.
Get access

Abstract

The present work deal with the coarse contrast modulation along the <010> directions observed in (100) planar view TEM observations of In0.52Al0.48As layers grown on InP substrates at temperatures higher than 550°C. The most important features of these contrast inhomogeneites are briefly reviewed. Besides, the appearance of the contrast in [011] cross-sectioned specimens is presented and its origin related to precipitates at the layer-substrate interface. The density of precipitates (ρp) has been found to increase as Tg rises, and an approximate value of the activation energy needed to induce the precipitation has been derived from the correlation of ρp and Tg.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Singh, J., Dudley, S., Davies, B. and Bajaj, K.K., J. Appl. Phys., 60, 3167, (1986).Google Scholar
[2] Brown, A. S., Delaney, M. J., and Singh, J., J. Vac. Sci. Technol. B7 (2), 384, (1989).Google Scholar
[3] Tournié, E., Zhang, Y.H. and Ploog, K.. Mat. Lett. 11, 343 (1991).Google Scholar
[4] Georgakilas, A., Zekentes, K., Kornilios, N., Halkias, G., Dimoulas, A., Christou, A., Peiró, F., Cornet, A., Benyattou, T., Tabata, A., and Guillot, G., Proc. “4th Conf. on Indium Phosphide and Related Materials”, Newport, RI, USA, April 21–24, 1992. p. 97 (IEEE, New York 1992).Google Scholar
[5] Peiró, F., Cornet, A., Herms, A., Morante, J.R., Georgakilas, A., and Halkias, G., Proc. Mat. Res. Symp. Soc., San Francisco, (April 27- May 1, 1992). Paper F6.15Google Scholar
[6] Georgakilas, A., Christou, A., Halkias, G., Zekentes, K., Kornilios, N., Papavassiliou, C., Dimoulas, A., Peiró, F., Cornet, A., Ababou, S., Tabata, A. and Guillot, G., Proc. “SOTAPOCS XVI, 181st Electrochemical Society Meeting”, St. Louis, MO, USA, May 17–22, 1992. paper 570 SOA.Google Scholar
[7] Praseuth, J.P., Goldstein, L., Hénoc, P., Primot, J. and Danan, G., J. Appl. Phys., 61, 215, (1987).Google Scholar
[8] Peiró, F., Cornet, A., Herms, A., Morante, J.R., Georgakilas, A., Zekentes, K., and Halkias, G., Proceedings of the 6thlnt. Conf. Sol. Films, and Surf. (Paris 1992), to be published in Appl. Surf. Scie.Google Scholar
[9] Stringfellow, G. B., J. Crys. Growth 58, 194 (1982).Google Scholar
[10] Hollinger, G., Gallet, D., Gendry, M., Santinelli, C. and Viktorovitch, P, J. Vac. Sci. Technol. B8, 832 (1990).Google Scholar
[11] Porter, D. A., Easterling, K.E.Phase Transformation in Metals and Alloys”, Ed. Reinhold, Van Nostran (UK) (1981.)Google Scholar
[12] Chu, N. G., Macrander, A. T., Strege, K. E. and Johnston, W.D. Jr, J. Appl. Phys., 57, 249, (1985).Google Scholar
[13] Treacy, M.M., NATO ASI Series, Vol. 203, 255 (1988).Google Scholar