Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:32:28.470Z Has data issue: false hasContentIssue false

On the Origin of Multiple Peaks in the Deep Level Admittance Spectroscopy of Dx Centers in AlGaAs:Sn

Published online by Cambridge University Press:  16 February 2011

S. Chakravarty
Affiliation:
Tata Institute of Fundamental Research, Bombay 400 005, India
S. Subramanian
Affiliation:
Tata Institute of Fundamental Research, Bombay 400 005, India
B. M. Arora
Affiliation:
Tata Institute of Fundamental Research, Bombay 400 005, India
Get access

Abstract

Deep level admittance spectroscopy (DLAS) of the Sn-DX centers in Alx Ga1−x As:Sn (0.2 < x < 0.6) shows three peaks SNi, SN2 and SN3. The SN3 peak is identified to be related to the dominant peak of the Sn-DX center observed in the conventional DLTS technique. The SN1 and SN2 peaks are not easily seen in DLTS. A careful analysis of the DLAS data shows that the three peaks are not due to independent (chemically distinct) defects related to Sn, but they are caused by the multiple sates of the same DX center.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lang, D.V., Logan, R.A., and Jaros, M., Phys. Rev. B19, 1015 (1979).10.1103/PhysRevB.19.1015Google Scholar
2. Subramanian, S., Arora, B.M., Mohapatra, Y.N., and Kumar, V., Mater. Science Forum Vols. 10–12, 405 (1986).10.4028/www.scientific.net/MSF.10-12.405Google Scholar
3. Ohno, H., Akatsu, Y., Hashizume, T., Hasegawa, H., Sano, N., Kato, H., and Nakayama, H., J. Vac. Sci. Technol. B3, 943 (1985).10.1116/1.583018Google Scholar
4. Balland, B., Blondea, R., and Mayet, L., Thin Solid Films 65, 275 (1980).10.1016/0040-6090(80)90237-0Google Scholar
5. Chakravarty, S., Subramanian, S., Sharma, D.K., and Arora, B.M., J. Appl. Phys. 66, 3955 (1989).10.1063/1.344029Google Scholar
6. Anand, S., Subramanian, S., and Arora, B.M., J.Appl.Phys. 67, 1121 (1990).10.1063/1.345801Google Scholar
7. Oldham, W.G. and Naik, S.S., Solid State Electron. 15, 1085 (1972).10.1016/0038-1101(72)90167-0Google Scholar
8. Milnes, A.G., Deep level impurities in semiconductors (Wiley, New York, 1973), p. 191.Google Scholar
9. Losee, D., J. Appl. Phys. 46, 2204 (1975).10.1063/1.321865Google Scholar
10. Blakemore, J.S., Semiconductor Statistics (Pergamon, 1962), p. 140.Google Scholar
11. Chadi, D.J., and Chang, K.J., Phys. Rev. Lett. 61, 873 (1989).10.1103/PhysRevLett.61.873Google Scholar
12. Morgan, T.N., Mater. Science Forum Vols.38–41, 1079 (1989).Google Scholar
13. Subramanian, S., Anand, S., Chakravarty, S., and Arora, B.M., Appl. Phys. Lett. 54, 145 (1989).10.1063/1.101211Google Scholar
14. Lang, D.V., in Deep centers in Semiconductors, ed. by Pantelides, S.T., (Gordon and Breach, New York, 1986), p. 489.Google Scholar
15. Kumagai, O., Kawai, H., Mori, Y., and Kaneko, K., Appl.Phys.Lett. 45, 1322 (1984).10.1063/1.95135Google Scholar