Hostname: page-component-6d856f89d9-26vmc Total loading time: 0 Render date: 2024-07-16T09:05:09.309Z Has data issue: false hasContentIssue false

On the Mechanics of Failure in Ceramic/Metal Bonded Systems

Published online by Cambridge University Press:  22 February 2011

Anthony G. Evans
Affiliation:
Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
M. Ruhle
Affiliation:
Max Planck Institut fur Metallforschung, Institut fur Werkstoffwissenschaften, Stuttgart, Federal Republic of Germany
Get access

Abstract

Stress concentrations that develop in metal/ceramic bonded systems have been evaluated and shown to encourage crack propagation at, or near, the edge of bonded interfaces. Experimental indentation observations on Nb/Al2O3 confirm the existence of the predicted stress concentrations. In this system, failure was invariably observed to initiate in the ceramic, such that quasi-static cracks located at the interface exhibited crack blunting. However, substantial dynamic reductions in the crack growth resistance of the interface are inferred from fracture surface observations. Implications for the optimal strengths of ceramic/metal bonded systems are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Berndt, C. C. and McPherson, R., Surfaces and Interfaces in Ceramic and Ceramic/Metal Systems (Ed. Pask, J. A. and Evans, A. G.) Plenum, N.Y. (1981) p. 619.Google Scholar
2. Twentyman, M. E. and Hancock, P., Surfaces and Interfaces in Ceramic and Ceramic/Metal Systems, Surfaces and Interfaces in Ceramic and Ceramic/Metal Systems (Ed. Pask, J. A. and Evans, A. G.) Plenum, N.Y. (1981), p. 535.Google Scholar
3. Florjanic, M., Mader, W., Ruhle, M. and Turwitt, M., this volume.Google Scholar
4. Bogy, D. G., J. Appl. Mech. 42 (1975) 93.CrossRefGoogle Scholar
5. Marshall, D. B., Evans, A. G., Khuri-Yakub, B. T., Tien, J. W. and Kino, G. S., Proc. Roy. Soc. A385 (1983) 461.Google Scholar
6. Evans, A. G., J. Am. Ceram. Soc. 65 (1982) 127.CrossRefGoogle Scholar
7. Timoshenko, S. and Goodier, J. N., Theory of Elasticity, McGraw Hill (1951).Google Scholar
8. Erdogan, F. and Gupta, G. D., Int. J. Solids and Structures, 7, (1971) 36.Google Scholar
9. O'Brien, T. K. ASTM STP 775 (1982) p. 140.Google Scholar
10. Schmauder, S., Ruhle, M. and Evans, A. G., to be published.Google Scholar
11. Suga, T., Ph.D. Thesis, Max Planck Institut fur Metallforschung, Stuttgart (1984).Google Scholar
12. Piva, A. and Viola, E., Engng. Frac. Mech. 13 (1980) 143.CrossRefGoogle Scholar
13. Erdogan, F., J. Appl. Mech. 32 (1965) 403. 166Google Scholar
14. Vehoff, H. and Neumann, P., Acta Met. 28 (1980) 265.Google Scholar
15. Freund, L. B. and Hutchinson, J. W., to be published.Google Scholar
16. Bertolotti, R. L., J. Am. Ceram. Soc. 57 (1974) 300.Google Scholar
17. Ritchie, R. O., Francis, B. and Server, W. L., Met. Trans. 7a (1976) 831.CrossRefGoogle Scholar
18. Marshall, D. B. and Lawn, B. R., J. Am. Ceram. Soc. 63 (1980) 532.CrossRefGoogle Scholar
20. Hill, R., Theory of Plasticity, Oxford Univ. Press (1950).Google Scholar