Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T18:47:06.226Z Has data issue: false hasContentIssue false

On the Existence of Ordered Phases of Encapsulated Diamondoids into Carbon Nanotubes

Published online by Cambridge University Press:  17 April 2012

S. B. Legoas
Affiliation:
Departamento de Física, CCT, Universidade Federal de Roraima, Boa Vista - RR, 69304-000, Brazil.
R. P. B. dos Santos
Affiliation:
Departamento de Física, Universidade Estadual de São Paulo, Rio Claro - SP, 13506-900, Brazil
K. S. Troche
Affiliation:
Instituto de Física “Gleb Wataghin, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
V. R. Coluci
Affiliation:
Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira - SP, 13484-332, Brazil
Douglas S. Galvao
Affiliation:
Instituto de Física “Gleb Wataghin, Universidade Estadual de Campinas, Campinas - SP, 13083-970, Brazil
Get access

Abstract

We have investigated some diamondoids encapsulation into single walled carbon nanotubes (with diameters ranging from1.0 up to 2.2 nm) using fully atomistic molecular dynamics simulations. Diamondoids are the smallest hydrogen-terminated nanosized diamond-like molecules. Diamondois have been investigated for a large class of applications, ranging from oil industry to pharmaceuticals. Molecular ordered phases were observed for the encapsulation of adamantane, diamantane, and dihydroxy diamantanes. Chiral ordered phases, such as; double, triple, 4- and 5-stranded helices were also observed for those diamondoids. Our results also indicate that the modification of diamondoids through chemical functionalization with hydroxyl groups can lead to an enhancement of the molecular packing inside the carbon nanotubes in comparison to non-functionalized molecules. For larger diamondoids (such as, adamantane tetramers), we have not observed long-range ordering, but only a tendency of incomplete helical structural formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dahl, J. E., Liu, S. G., and Carlson, R. M. K., Science 299, 96 (2003).Google Scholar
2. Mansoori, G. A., Principles of Nanotechnology. Molecular-Based study of Condensed Matter in Small Systems. (World Scientific, Singapore, 2005).Google Scholar
3. Marchand, A. P., Aldrichimica Acta 28, 95 (1995).Google Scholar
4. Marsusi, F., Mirabbaszadeh, K., and Mansoori, G. A., Physica E 41, 1151 (2009).Google Scholar
5. Xue, Y. and Mansoori, G. A., Int. J. Mol. Sci. 11, 288 (2010).Google Scholar
6. de Araujo, E. S., Mansoori, G. A., Xue, Y., and de Araujo, P. L. B., Phys. Exp. 1, 67 (2011).Google Scholar
7. Fort, R. C., Adamantane: The chemistry of Diamond Molecules (Dekker, New York, 1976).Google Scholar
8. Merkle, R. C., Nanotechnology 11, 89 (2000).Google Scholar
9. Tkachenko, B. A. et al. ., Org. Lett. 8, 1767 (2006).Google Scholar
10. McIntosh, G. C. et al. ., Phys. Rev. B 70, 045401 (2004).Google Scholar
11. Rappé, A. K. et al. ., J. Am. Chem. Soc. 114, 10024 (1992).Google Scholar
13. Legoas, S. B. et al. ., Phys. Rev. Lett. 90, 055504 (2003).Google Scholar
14. Troche, K. S. et al. ., Nano Lett. 5, 349 (2005).Google Scholar
15. Schreiner, P. R. et al. ., J. Org. Chem. 71, 6709 (2006).Google Scholar
16. Ishizone, T. et al. ., Tetrahedron Lett. 42, 8645 (2001).Google Scholar
17. Nosé, S., Prog. Theor. Phys., Suppl. 103, 1 (1991).Google Scholar
18. Hodak, M. and Girifalco, L. A., Phys. Rev. B 67, 075419 (2003).Google Scholar
19. Pickett, G. T., Gross, M., and Okuyama, H., Phys. Rev. Lett. 85, 3652 (2000).Google Scholar
20. Legoas, S. B. et al. ., Nanotechnology 22, 315708 (2011).Google Scholar