Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:18:21.772Z Has data issue: false hasContentIssue false

On the Development of Biomimetic Sensors: Immobilizaton of Lipid Bilayers in Layered Ceramics

Published online by Cambridge University Press:  15 February 2011

Michael W. Russell
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Vivek Mehrotra
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Emmanuel P. Giannelis
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Get access

Abstract

Artificial membranes possessing physicochemical properties similar to biological membranes have been synthesized by immobilization of synthetic amphiphiles in layered ceramics. The intercalated bilayer-forming amphiphiles exhibit a gallery height of about 39 Å. Retention of bilayer-forming characteristics is further confirmed by the presence of a crystal to liquid-crystal phase transition. A dramatic increase in the membrane capacitance at the tansition temperature is attributed to an increase in membrane fluidity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wardy, W., Chem. & Engr. News, 68, 24, (1990).Google Scholar
2. Genga, G., ed. Structures and Properties of Cell Membranes, VoL I-III, (CRC Press, Boca Raton, FL 1985).Google Scholar
3. Cagan, R. H and Kore, M.R., Eds., Biochemistry of Taste and Olfaction, (Academic Press, New York, 1981).Google Scholar
4. Kumazawa, T., Kashiwayanagi, M. and Kurihara, K., Brain Res., 333, 27, (1985).Google Scholar
5. Kunitake, T., Tsuge, A., and Nakashima, N., Chemistry Letters. 1984, 1783.Google Scholar
6. Kunitake, T., Okahata, Y., and Yasunami, S., J. Am. Chem. Soc., 104, 5547, (1982).Google Scholar
7. Okahata, Y. and En-na, G., J. Chem.Soc. Chem. Commun.. 1987, 1365.Google Scholar
8. Nakashima, N., Eda, H., Kunitake, M., Manabe, O., and Nakano, K., J. Chem. Soc. Chem. Commun. 1990, 443.Google Scholar
9. Umezawa, Y. and Sugawara, M, MRS Int'l. Mig. on Adv. Mats. Vol.14, 191 (1989).Google Scholar
10. Okahata, Y., MRS In'l. Mtg. on Adv. Mats. Vol.14, 229, (1989).Google Scholar
11. Nakashima, N., J. Mat. Lett., (1989), 387.Google Scholar
12. Okuyama, K., Soboi, Y., Hirabayashi, K., Harada, A., Kumano, A., Kaziyama, T., Takayanagi, M., and Kunitake, T., Chemistry Letters, 1984, 2117.Google Scholar
13. Higashi, N. and Kunitake, T.. Polymer Journal, 16. 583, (1984).Google Scholar
14. Nakashima, N., Yamashita, K., Jorobata, T., Tanaka, K., Nakano, K., and Takagi, M., Analytical Sciences, 2, 589, (1986).Google Scholar
15. Aoki, R., Kimizuka, N., Shimomura, M., and Kunitake, T., Synth. Metals, 18, 861, (1987).Google Scholar
16. Imamura, K., Nogami, T., Shirota, Y., Ishioka, T., and Kobayashi, M., Bull. Chem. Soc. Jpn, 60, 3879, (1987).Google Scholar