Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:14:23.206Z Has data issue: false hasContentIssue false

On the Amorphisation Trajectory of Carbon Nanotubes

Published online by Cambridge University Press:  26 June 2014

Saveria Santangelo
Affiliation:
Dipartimento di Ingegneria Civile, dell’Energia, dell’Ambiente e dei Materiali (DICEAM) Università “Mediterranea”, Loc. Feo di Vito, 89122 Reggio Calabria, Italy.
Candida Milone
Affiliation:
Dipartimento di Ingegneria Elettronica, Chimica ed Ingegneria Industriale (DIECII) Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy.
Get access

Abstract

A very simple model for the kinetics of oxidation of carbon Nanotubes (NTs) is proposed which is able to reproduce the main features of their measured kinetic thermal oxidation profiles. Based on this model the resistance to oxidation of NTs is found to decrease with increasing defect density and amorphous phases, i.e. sp3 bonding component. This finding supports the validity of assumptions previously made to explain the correlation between results of Raman Spectroscopy (RS) and Kinetic Thermal Analysis (KTA) on NTs via a three-stage model, inspired to that proposed by Ferrari and Robertson for other nanocarbons.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, eds. Jorio, A., Dresselhaus, G., and Dresselhaus, M. S., Topics in Applied Physics 111 (Springer-Verlag Berlin Heidelberg, 2008).CrossRefGoogle Scholar
Dresselhaus, M. S. Dresselhaus, G., Saito, R., and Jorio, A., Phys. Rep. 409, 47 (2005).CrossRefGoogle Scholar
Malarda, L.M., Pimenta, M.A., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rep. 473, 51 (2009).CrossRefGoogle Scholar
Santangelo, S., and Milone, C., J. Phys. Chem. C 117, 14206 (2013).CrossRefGoogle Scholar
Santangelo, S., Messina, G., Faggio, G., Lanza, M., and Milone, C., J. Raman Spectr. 42, 593 (2011).CrossRefGoogle Scholar
Santangelo, S., Lanza, M., and Milone, C., J. Phys. Chem. C. 117, 4815 (2013).CrossRefGoogle Scholar
Lehman, J. H., Terrones, M., Mansfield, E., Hurst, K. E., and Meunier, V., Carbon 49, 2581 (2011).CrossRefGoogle Scholar
Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K., and Hiura, H., Nature 362, 522 (1993).CrossRefGoogle Scholar
Osswald, S., Flahaut, E., and Gogotsi, Y., Chem. Mater. 18, 1525 (2006).CrossRefGoogle Scholar
Bom, D., Andrews, R., and Jacques, D., Nano Lett. 2, 615 (2002).CrossRefGoogle Scholar
Zaghib, K., Song, X., and Kinoshita, K., Termochim. Acta 371, 57 (2001).CrossRefGoogle Scholar
Ferrari, A. C., and Robertson, J., Phys. Rev. B 61, 14095 (2001).CrossRefGoogle Scholar
Mezzi, A., and Kaciulis, S., Surf. Interface Anal. 42, 1082 (2010).CrossRefGoogle Scholar
Fazio, E., Piperopoulos, E., Abdul Rahim, S. H., Lanza, M., Faggio, G., Mondio, G., Neri, F., Mezzasalma, A. M., Milone, C., and Santangelo, S., Curr. Appl. Phys. 13, 748 (2013).CrossRefGoogle Scholar
Lesiak, B., Zemek, J., Jiricek, P., and Stobinski, L., Phys. Status Solidi B 246, 2645 (2009).CrossRefGoogle Scholar
Jiang, W., Nadeau, G.,Zaghib, K., and Kinoshita, K., Thermochim. Acta 351, 85 (2000).CrossRefGoogle Scholar
Huang, W., Wang, Y., Luo, G., and Wei, F., Carbon 41, 2585 (2003).CrossRefGoogle Scholar