Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T04:23:14.541Z Has data issue: false hasContentIssue false

On Magnetostrictive Transducer Applications

Published online by Cambridge University Press:  15 February 2011

Alison B. Flatau
Affiliation:
Department of Aerospace Engineering and Engineering Mechanics, Iowa State University, Ames, IA
Marcelo J. Dapino
Affiliation:
Department of Aerospace Engineering and Engineering Mechanics, Iowa State University, Ames, IA
Frederick T. Calkins
Affiliation:
Boeing Phantom Works, Seattle, WA
Get access

Abstract

This paper provides an overview of magnetostrictive transducer technology. The bi-directional coupling between the magnetic and mechanical states of a magnetostrictive material provides a transduction mechanism that can be used both for actuation and sensing. The current interest in design of adaptive smart structures, coupled with the advent of materials that exhibit high sensor figures of merit, such as Metglas and giant magnetostrictive materials such as Terfenol-D has lead to a renewed interest in the engineering of optimized magnetostrictive transducer designs. A survey of recent applications for giant magnetostrictive materials as both sensors and actuators and their use in smart structure applications will be presented along with a brief discussion of some pertinent device design issues. Examples of magnetostrictive actuation used to produce displacements, force and acoustic waves are summarized. Magnetostrictive sensor configurations that measure motion, stress or force, torque, magnetic fields and target characteristics are discussed. A very brief look at transducer modeling and experimental results is included and schematics of a number of actuator and sensor configurations are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ristic, L., ed, Sensor technology and devices, Artech House, Inc, Norwood, MA, 1994.Google Scholar
2 Jiles, D., Introduction to Magnetism and Magnetic Materials, Chapman and Hall, London, 1991.10.1007/978-1-4615-3868-4Google Scholar
3 Clark, A., Ferromagnetic Materials Vol.1, North-Holland Pub, 1980.Google Scholar
4 Jiles, D., J. Phys. D: Appl. Phys. 28, 1995, pp. 15371546.10.1088/0022-3727/28/8/001Google Scholar
5 Lee, E., Reports on Prog. in Phys.,18, 184, 1955, pp. 184229.10.1088/0034-4885/18/1/305Google Scholar
6 de Lacheisserie, E. du Tremolet, Magnetostriction Theory and ppplications of magnetoelasticity, CRC Press, Inc., Boca Raton, 1993.Google Scholar
7 Butler, J. L., Application Manual for the Design Etrema Terfenol-D Magnetostrictive Transducers, Edge Technologies, Ames, IA, 1988.Google Scholar
8 Hunt, F.V., Electroacoustics: The Analysis of Transduction, and its Historical Background, American Institute of Physics for the Acoustical Society of America, 1982.Google Scholar
9 Cedell, T., Magnetostrictive Materials and Selected Applications, Ph.D. dissertation, Dept of Production and Materials Engineering, Lund University, Sweden, 1995, ch. 3 and ch. 5.Google Scholar
10 Moffett, M., Porzio, R., and Bernier, G., NUWC-NPT Tech. Doc. 10, 883–A, 1995.Google Scholar
11 Calkins, F. T., Ph.D. Dissertation, Iowa State University,1997.Google Scholar
12 Rolt, K., J. Acoust. Soc. Am. Vol. 87 (3), 1990.Google Scholar
13 Cohick, S.M. and Butler, J.L., J. Acoust. Soc. Am. Vol. 72 (2), 1982, pp. 313315.10.1121/1.388082Google Scholar
14 Roth, R. C, Proc. 3rd Int. Conf. Now Actuators, AXON Tech., Breman, Germany, 1992, pp. 138141.Google Scholar
15 Bebernis, T., Senior Project Report, Aerospace Engr. & Engr. Mechanics, Iowa State Univ., Dec.1999.Google Scholar
16 Dapino, MJ., Calkins, F. T. and Flatau, A. B., in Wiley Encyclopedia of Electrical and Electronics Engineering, edited by Webster, J. G., John Wiley & Sons, Inc. Vol. 12, pp. 278305.Google Scholar
17 Summary of Technical Report of Division 6, NDRC, The design and construction of magnetostriction transducers, Vol. 13, 1946.Google Scholar
18 Ewing, J.A., Effects of stress & magnetic induction in iron & other materials, Van Norstrand, NY 1900.Google Scholar
19 Kobayosi, T., Repts of the Aeronautical Institute of Tokyo University, No. 52, 1929.Google Scholar
20 Fleming, W., SAE Technical paper 900264, 1990, pp. 5178.Google Scholar
21 Garshelis, I. J., U. S. Patent 5,887,335, 1999.Google Scholar
22 Fleming, W., IEEE Trans. Vehic. Tech., Vol. 38 (3), 1989, pp. 159167.10.1109/25.45469Google Scholar
23 Garshelis, I. J., IEEE Trans. Magn., Vol. 28, No. 5, Sep. 1992, pp. 22022204.10.1109/20.179443Google Scholar
24 Yamasaki, J., Mohri, K., Manabe, T., Teshima, N. and Fukuda, S., IEEE Trans Magn. Vol. 22 (5), 1986, pp. 403405.10.1109/TMAG.1986.1064494Google Scholar
25 Mohri, K., IEEE Trans Magn. Vol. 20, 1984, pp 942.10.1109/TMAG.1984.1063522Google Scholar
26 Sasada, I., Uramoto, S. and Harada, K., IEEE Trans Magn., Vol. 22 (5), 1986, pp 406408.10.1109/TMAG.1986.1064383Google Scholar
27 US Patent 5201964, Savage, H., Clark, A., Wun-Fogle, M., Kaacoff, L., Hernando, A. & Breihoff, B., 1993.Google Scholar
28 Sasada, I., Suzuki, N., Sasaoka, T. and Toda, K., IEEE Trans Magn. Vol. 30 (6), 1994, pp. 4632–35.10.1109/20.334173Google Scholar
29 Shimada, M., J. Appl. Phys. 73 (10), 1993, pp. 6872–74.10.1063/1.352467Google Scholar
30 Pratt, J. and Flatau, A., SPIE Proceedings Vol. 1917, 1993, pp. 952961.10.1117/12.152827Google Scholar
31 Jones, L. and Garcia, E., ASME Proceedings Vol. 45, 1994, pp. 155165.Google Scholar
32 Pratt, J., Design and analysis of a self-sensing Terfenol-D magnetostrictive actuator, MS thesis, Iowa State University, 1993.Google Scholar
33 Fenn, R. and Gerver, M., Proceedings of SPIE 1994, Vol. 2190, pp. 216227.10.1117/12.175184Google Scholar
34 Kleinke, D.K. and Uras, H.M., Rev Sci Instr 64 (8) 1993, pp. 2361–67.10.1063/1.1143935Google Scholar
35 Nyce, D., Sensors, 1994, pp. 2226.10.1080/00913847.1994.11947634Google Scholar
36 Peyrucat, J., Mesures, 43, 1986.Google Scholar
37 Wun-Fogle, M., Savage, H.T. and Spano, M. L., J. Materials Engineering Vol. 11 (1), 1989, pp. 103-.10.1007/BF02833760Google Scholar
38 Hristoforous, E. and Reilly, R. E., IEEE Trans Mag, Vol. 30 (5), 1994, pp. 27282733.10.1109/20.312512Google Scholar
39 Zakrzewski, J., IEEE Trans Instr and measur. Vol. 46 (4), 1997, pp. 807–10.10.1109/19.650778Google Scholar
40 Hristoforous, E. and Reilly, R.E., IEEE Trans Mag. Vol 28 (4), 1992, pp. 1974–77.10.1109/20.144756Google Scholar
41 US Patent 4924711, Reilly, R. “Force transducers for use in arrays,”1990.Google Scholar
42 Kleinke, D.K and Uras, H. M., Rev Sci Instrum 65 (5), 1994, pp. 16991710.10.1063/1.1144863Google Scholar
43 Seekircher, J. and Hoffmann, B., Sensors and Actuators A, 21–23, 1990, pp. 401405.10.1016/0924-4247(89)80002-0Google Scholar
44 Mohri, K. and Takeuchi, S., IEEE Trans Magn. Vol. 17 (6), 1981, pp. 3379–81.10.1109/TMAG.1981.1061472Google Scholar
45 Bartels, K. A., Kwun, H. and Hanley, J. J., SPIE proceedings Vol. 2946, 1996.Google Scholar
46 US Patent 5581037, Kwun, Hegeon and Teller, Cecil M. II 1995.Google Scholar
47 Brophy, J.W. and Brett, C.R., SPIE Proceedings Vol. 2947, 1996, pp. 205209.10.1117/12.259168Google Scholar
48 May, R.G. and Claus, R.O., SPIE Proceedings Vol. 2948,1996, pp. 2434.10.1117/12.259207Google Scholar
49 Foner, S., IEEE Trans. Magn. Vol.17 (6), 1981, pp. 33583363.10.1109/TMAG.1981.1061748Google Scholar
50 Weber, R. and Jiles, D., U.S. Department of Commerce, grant ITA 87-02, 1992.Google Scholar
51 Chung, R., Weber, R. and Jiles, D., IEEE Trans. Magn. Vol. 27, No 6, 1991, pp. 5358–5243.10.1109/20.278838Google Scholar
52 Doherty, J., Arigapudi, S. and Weber, R., IEEE Trans. Magn. Vol. 30 (3), 1994, pp. 12741290.10.1109/20.297765Google Scholar
53 Yariv, A. and Windsor, H., Opt Lett. 5, 1980, p. 87.10.1364/OL.5.000087Google Scholar
54 Mermelstein, M., Electro Lett. 21, 1985, p. 1178.10.1049/el:19850832Google Scholar
55 Mohri, K., IEEE Trans. Magn. Vol. 20 (5), 1984.Google Scholar
56 Hristoforou, E., Chiriac, H. and Neagu, M., IEEE Trans. on Instr. and Measurement Vol. 46 (2), 1997.10.1109/19.571942Google Scholar
57 Meydan, T. and Elshebani, M., IEEE Trans. Magn. Vol 27 (6), 1991, pp. 5250–52.10.1109/20.278803Google Scholar
58 Worthington, T., Calcagno, P., Romankiw, P., Thomson, L., IEEE Trans. Mag. Vol.15, 1979, pp. 1797.10.1109/TMAG.1979.1060501Google Scholar
59 Shirae, K. and Honda, A, IEEE Trans. Magn. Vol. 17, 1981, pp. 3151.10.1109/TMAG.1981.1061689Google Scholar
60 Klinger, T., Pfutzner, H., Schonhuber, P., Hoffmann, K. and Bachl, N., IEEE Trans. Magn. Vol. 28 (5), 1992, pp. 2400–02.10.1109/20.179505Google Scholar
61 Klinger, T., Schmollebeck, F., Pfutzner, H., Schonhuber, P., IEEE Tran. Mag. Vo.28, '92, pp. 2397–99.10.1109/20.179504Google Scholar
62 White, S. and Albers, R., USACERL Contract No. DAC88-95-D-0004-01, Feb. 1996.Google Scholar
63 Restorff, J. B., Encyclopedia of Applied Physics, Vol. 9, 1994, pp. 229244.Google Scholar