No CrossRef data available.
Article contents
Obtaining Solubility Constants to Describe the Incongruent Dissolution of SON68 Waste Glass by an Equilibrium Ideal Solid Solution Model Approach
Published online by Cambridge University Press: 21 March 2011
Abstract
One of the waste forms resulting from the Belgian programme for nuclear energy is the R7T7 high level waste glass, simulated by the SON68 glass. When exposed to distilled water or synthetic interstitial clay water, SON68 glass dissolves incongruently, releasing some elements (B, Li, Na) faster to the solution than others (Si, Al, Ca). The objective of this study is to describe the composition of the leachate in contact with inactive SON68 glass by assuming congruent glass dissolution followed by the precipitation of a secondary solid phase represented as an ideal solid solution in equilibrium with the leachate. Experimental SON68 dissolution data in distilled water was available at three temperatures. The solubility of the different end members in the solid solution is optimized using the available data for each temperature. The temperature dependence of the different end members was then obtained by Van 't Hoff equation. The calibrated model can describe the composition of the leachate and the altered glass phase during glass dissolution at different temperatures. The model, calibrated for the distilled water system, could successfully describe the composition of the leachate during glass dissolution experiments in a synthetic clay water system.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2006