Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T18:02:44.374Z Has data issue: false hasContentIssue false

Observation of Vacancy-Oxygen Complexes in Silicon Implanted with Substoichiometric Doses of Oxygen Ions

Published online by Cambridge University Press:  26 February 2011

A. I. Belogorokhov
Affiliation:
Centre for Analysis of Substances, 9, Elektrodnaya St., 111524 Moscow, Russia Institute of Rare Metals, 156–517, Leninsky Prospekt, 117571 Moscow, Russia
L. A. Charnyi
Affiliation:
Centre for Analysis of Substances, 9, Elektrodnaya St., 111524 Moscow, Russia Moscow Steel and Alloys Institute, 4, Leninsky Prospekt, 117936 Moscow, Russia
A. B. Danilin
Affiliation:
Centre for Analysis of Substances, 9, Elektrodnaya St., 111524 Moscow, Russia
A. W. Nemirovski
Affiliation:
Centre for Analysis of Substances, 9, Elektrodnaya St., 111524 Moscow, Russia Moscow Steel and Alloys Institute, 4, Leninsky Prospekt, 117936 Moscow, Russia
Get access

Abstract

Cz-grown p-Si(111) specimens were implanted with O+ ions at an energy of 150 keV and doses of 0.25, 0.5, and 1.0 (·1017) cm−2. The implantation temperatures used were 350 and 650 °C. After the implantation, some of the specimens were annealed at 1000 °C for 1 h in a nitrogen atmosphere. IR data indicated the presence of vacancy-oxygen complexes both before and after annealing, irrespective of implantation temperature. Double-crystal X-ray rocking curves also showed that vacancy-type defects are present.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sumino, K., 2nd Inter. Autumn Meeting Proc. Gettering and Defect Engineering in Semiconductor Technology (GADEST 87), Garzau, Germany, 1987. Akad. Weisenschaften DDR, Frankfurt (Oder), 218 (1987).Google Scholar
2. Shimura, F., Tsuya, H., and Kawamura, T., Appl. Phys. Lett. 37, 483 (1980).Google Scholar
3. Hu, S.M., in Defects in Semiconductors, edited by Narayan, J. and Tan, T.Y. (North-Holland, Amsterdam, 1981), p. 333.Google Scholar
4. Maydell-Ondrusz, E.A. and Wilson, I.H., Thin Solid Films 114, 367 (1984).Google Scholar
5. Oates, A.S., Newman, R.C., Tucker, J.M., Davis, G., and Lightowlers, E.C., Mater. Res. Soc. Symp. Proc. 59, 59 (1986).Google Scholar
6. Bourret, A., Mater. Res. Soc. Symp. Proc. 59, 223 (1986).Google Scholar
7. Danilin, A.B., Malinin, A.A., Mordkovich, V.N., Saraikin, V.V., and Vyletalina, O.I., Nucl. Instr. and Meth. in Phys. Res. B82, 431 (1993).Google Scholar
8. Afanas–ev, A.M., Aleksandrov, P.A., and Imamov, R.M., X-Ray Diagnostics of Superficial Layers (Nauka, Moscow, 1986) (in Russian).Google Scholar
9. Newman, R.C., Infra-Red Studies of Crystal Defects (Taylor and Francis, London, 1973), p. 187.Google Scholar
10. Corbett, J.W., Watkins, G.D., and McDonald, R.C., Phys. Rev. 135, A1381 (1964).Google Scholar
11 Lindstrom, J.L. and Svensson, B.G., Mater. Res. Soc. Symp. Proc. 59, 45 (1986).Google Scholar
12. Stein, H.J., Defects in Semiconductors III, edited by von Bardeleben, H.J. (Trans. Tech. Publ., Aedermannsdorf, 1986), p. 935.Google Scholar
13. Stein, H.J., Mater, res. Soc. Symp. Proc. 104, 173 (1988).Google Scholar
14. Diantong, L., Lirong, Z., Zhonglie, W., and Hemment, P.L.F., Nucl. Instr. and Meth. in Phys. Res. B55, 705 (1991).Google Scholar
15. Reeson, K.J., Marsh, C.D., Chater, R.J., Kilner, J.A., Robinson, A., Christiansen, K.N., Hemment, P.L.F., Harbeke, G., Steigmeier, E.F., Booker, G.R., and Celler, G.K., Microelectronics Engineering 8 (3/4), 163174 (1988).Google Scholar
16. Hu, S.M., J. Appl. Phys. 51, 59 (1980).Google Scholar
17. Holland, O.W., Screen, T.P., Faty, D., and Narayan, J., Appl. Phys. Lett. 45 (10), 10811083 (1984).Google Scholar