Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:22:45.319Z Has data issue: false hasContentIssue false

Observation of Rheed Intensity Oscillations During PbSe/CaF2/Si(111) MBE

Published online by Cambridge University Press:  10 February 2011

W. K. Liu
Affiliation:
Department of Physics and Astronomy and Laboratory for Electronic Properties of Materials, University of Oklahoma, Norman, OK 73019
X. M. Fang
Affiliation:
School of Electrical and Computer Engineering and Laboratory for Electronic Properties of Materials, University of Oklahoma, Norman, OK 73019
P. J. McCann
Affiliation:
School of Electrical and Computer Engineering and Laboratory for Electronic Properties of Materials, University of Oklahoma, Norman, OK 73019
M. B. Santos
Affiliation:
Department of Physics and Astronomy and Laboratory for Electronic Properties of Materials, University of Oklahoma, Norman, OK 73019
Get access

Abstract

RHEED intensity oscillations observed during MBE growth of CaF2 on Si(111) and PbSe on CaF2/Si(111) are presented. The effects of substrate temperature and initial nucleation procedure are investigated. Strong temporal oscillations of the specular beam intensity are found to be most readily observed at temperatures below 200°C for both CaF2 and PbSe. Growth rates measured as a function of cell temperatures exhibit Arrhenius behavior with activation energies of 5.0 eV and 1.93 eV for CaF2 and PbSe, respectively. The relatively high activation energy obtained for CaF2 is consistent with the high melting point and sublimation energy of ionic fluorides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schowalter, L.J. and Fathauer, R.W., CRC Critical Reviews in Solid State and Material Sciences, 15 367 (1989) and ref. therein.Google Scholar
2. Barrière, A.S., Raoux, S., Garcia, A., L'Haridon, H., Lambert, B., and Moutonnet, D., J. Appl. Phys. 75, 1133 (1994).Google Scholar
3. Watanabe, M., Suemasu, T., Muratake, S., and Asada, A., Appl. Phys. Lett. 62, 300 (1993).Google Scholar
4. Zogg, H., Blunier, S., Fach, A., Maissen, C., Miller, P., Teodoropol, S., Meyer, V., Kostorz, G., Dommann, A., and Richmond, T., Phys. Rev. B, 50, 10801 (1994).Google Scholar
5. Zogg, H., Maissen, C., Blunier, S., Teodoropol, S., Overney, R. M., Richmond, T., and Haefke, H., J. Crystal Growth, 127, 668 (1993).Google Scholar
6. Fach, A., Maissen, C., Masek, J., Teodoropol, S., and Zogg, H., Mat. Res. Soc. Symp. Proc. 229, 279 (1994).Google Scholar
7. Zogg, H., Fach, A., John, J., Masek, J., Müller, P., and Paglino, C. in Narrow Gap Semiconductors 1995, edited by Reno, J. L. (Institute of Physics Publishing Ltd., London, 1995) p. 160.Google Scholar
8. Müller, P., Fach, A., John, J., Tiwari, A. N., Zogg, H., and Kostorz, G., J. Appl. Phys. 79, 1911 (1996).Google Scholar
9. Sokolov, N. S., Alverez, J. C., and Yakovlev, N. L., Appl. Surf. Sci. 60/61, 421 (1992).Google Scholar
10. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
11. Niwano, M., Takeda, Y., Ishibashi, Y., Kurita, K., and Miyammoto, N., J. Appl. Phys. 71, 5646 (1992).Google Scholar
12. McCann, P. J., Fang, X. M., Liu, W. K., Strecker, B. N. and Santos, M.B., J. Cryst. Growth 175 (1997), in press.Google Scholar
13. Strecker, C. L., J. Appl. Phys. 52, 6921 (1981).Google Scholar
14. Yang, M. H. and Flynn, C.P, Phys. Rev. Lett. 62 2476 (1989).Google Scholar
15. Fuchs, J., Feit, Z., and Preier, H., Appl. Phys. Lett. 53, 894 (1988).Google Scholar
16. Springholz, G. and Bauer, G., J. Crystal Growth, 144, 157 (1994).Google Scholar