Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:41:13.814Z Has data issue: false hasContentIssue false

Observation of Metastability in Amorphous Silicon Containing 0.1 at.% Hydrogen

Published online by Cambridge University Press:  21 February 2011

Howard M. Branz
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Eugene Iwaniczko
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Get access

Abstract

We observe reversible quenched-in metastability in the dark conductivity of extremely low-H-content amorphous silicon (a-Si). The sample is sputtered, P-implanted a-Si containing 0.1 at.% of H. Except for the high value of its equilibration temperature (T*), 355° ± 20°C, this metastability is similar to that observed in doped hydrogenated a-Si (a-Si:H). The ∼10 at.% H present in a-Si:H is not essential for a-Si metastability. After hydrogenation with about 10 at.% of H, T* falls to 175° ± 10°C. We propose that higher H content reduces T* by increasing Si network flexibility.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Amorphous Silicon Materials and Solar Cells, AIP Conf. Proc. 234. edited by Stafford, B. L. (AIP, New York, 1991).Google Scholar
2. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).CrossRefGoogle Scholar
3. Staebler, D. L. and Wronski, C. R., J. Appl. Phys. 51, 3262 (1980).CrossRefGoogle Scholar
4. Dersch, H., Stuke, J., and Beichler, J., Appl. Phys. Lett. 38, 456 (1981).CrossRefGoogle Scholar
5. Carlson, D. E., App. Phys. A 41, 305 (1986).CrossRefGoogle Scholar
6. Street, R. A., Kakalios, J., Tsai, C. C., and Hayes, T. M., Phys. Rev. B 35, 1316 (1987).CrossRefGoogle Scholar
7. Ast, D. G. and Brodsky, M. H., in Physics of Semiconductors 1978, Inst. Phys. Conf. Ser. No. 43, edited by Wilson, B. L. H. (IOP, 1979, London, 1979), p. 1159.Google Scholar
8. Branz, H. M., Keyes, B. M., and Trefny, J. U., in Proceedings of the International Topical Conference on Hydrogenated Amorphous Silicon Devices and Technology, edited by Kanicki, J. (IBM, Yorktown Heights, 1988), p. 76.Google Scholar
9. Street, R. A., Kakalios, J., and Hayes, T. M., Phys. Rev. B 34, 3030 (1986).CrossRefGoogle Scholar
10. Mahan, A. H. and Vanecek, M., in Amorphous Silicon Materials and Solar Cells, AIP Conf. Proc, 234, edited by Stafford, B. L. (AIP, New York, 1991), p. 195.Google Scholar
11. Tsuo, Y. S., Deng, X. J., Smith, E. B., Xu, Y., and Deb, S. K., J. Appl. Phys. 64, 1604 (1988).CrossRefGoogle Scholar
12. Matsuo, S., Nasu, H., Akamatsu, C., Hayashi, R., Imura, T., and Osaka, Y., Jpn. J. Appl. Phys. 27, L132 (1988).CrossRefGoogle Scholar
13. Xu, X., Isomura, M., Yoon, J. H., and Wagner, S., in Amorphous Silicon Technology-1991, edited by Madan, A., Thompson, M. J., LeComber, P. G., Hamakawa, Y., and Taylor, P. C. (Materials Research Society, Pittsburgh, 1991), p. 69.Google Scholar
14. Banerjee, R., Furui, T., Okushi, H., and Kazunobu, T., Appl. Phys. Lett. 53, 1829 (1988).CrossRefGoogle Scholar
15. Leen, T. M., Cohen, J. D., and Gelatos, A. V., in Amorphous Silicon Technology-1990, edited by Taylor, P. C., Thompson, M. J., LeComber, P. G., Hamakawa, Y., and Madan, A. (Materials Research Society, Pittsburgh, 1990), p. 707.Google Scholar
16. Branz, H. M., Phys. Rev. B 38, 7474 (1988).CrossRefGoogle Scholar
17. Branz, H. M., Capuder, K., Lyons, E. H., Haggerty, J. H., and Adler, D., Phys. Rev. B 36, 7934 (1987).CrossRefGoogle Scholar