Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:39:21.092Z Has data issue: false hasContentIssue false

Observation of Laser Speckle Effects in an Elementary Chemical Reaction

Published online by Cambridge University Press:  21 March 2011

Eric Monson
Affiliation:
University of Michigan Departments of Chemistry and Applied Physics Ann Arbor, MI 48109-1055, USA
Raoul Kopelman
Affiliation:
University of Michigan Departments of Chemistry and Applied Physics Ann Arbor, MI 48109-1055, USA
Get access

Abstract

An experimental demonstration is shown for non-classical reaction kinetics in a homogeneous system with an elementary reaction, A+B→C. Sensitivity to the initial distribution of reactants is observed, along with a new reaction-kinetics regime which is a direct consequence of speckles in the laser beam. The long-time regime gives the first experimental demonstration of the asymptotic self-segregation (“Zeldovich”) effect, in spite of the non-random, speckled initial distribution of reactant B. Monte-Carlo simulation results are consistent with the experiments, and spatial analysis of these results correlates the excess of long-wavelength components in the initial reactant distribution with an anomalous slowing of the reaction progress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kopelman, R., Science 241, 1620 (1988).Google Scholar
2. Weiss, G., in proceedings from Models of Non-Classical Reaction Rates, edited by Lebowitz, J. L. (Plenum Press, N.I.H., 1991), J. Stat. Phys. Vol. 65.Google Scholar
3. Ovchinnikov, A. A. and Zeldovich, Y. B., Chem. Phys. 28, 215 (1978).Google Scholar
4. Toussaint, D. and Wilczek, F., J. Chem. Phys. 78, 2642 (1983).Google Scholar
5. Lindenberg, K., Romero, A. H., and Sancho, J. M., Int. J. Bifurcation Chaos 8, 853 (1998).Google Scholar
6. Lindenberg, K., Argyrakis, P., and Kopelman, R., in Noise and Order: The New Synthesis (Chapter 12), edited by Millonas, M. (Springer, New York, 1996), p. 171.Google Scholar
7. Argyrakis, P. and Kopelman, R., J. Phys. Chem. 93, 225 (1989).Google Scholar
8. Monson, E. and Kopelman, R., Phys. Rev. Lett. 85, 666 (2000).Google Scholar
9. Harrison, S. M. and Bers, D. M., Biochimica Et Biophysica Acta 925, 133 (1987).Google Scholar
10. Lin, A. L., Monson, E., and Kopelman, R., Phys. Rev. E 56, 1561 (1997).Google Scholar
11. Argyrakis, P., Comput. Phys. 6, 525 (1992).Google Scholar
12. Fujii, H., Uozumi, J., and Asakura, T., J. Opt. Soc. Am. 66, 1222 (1976).Google Scholar
13. Press, W. H., Teukolsky, S. A., Vetterling, W. T.et al., in Numerical Recipes in C: The art of scientific computing (Cambridge University Press, 1992), p. 591.Google Scholar
14. Scargle, J. D., Steimancameron, T., Young, K.et al., Astrophys. J. 411, L91 (1993).Google Scholar
15. McKechnie, T. S., Optik 39, 258 (1974).Google Scholar
16. Dainty, J. C., Optica Acta 17, 761 (1970).Google Scholar
17. Argyrakis, P., Kopelman, R., and Lindenberg, K., Chem. Phys. 177, 693 (1993).Google Scholar