Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:11:51.392Z Has data issue: false hasContentIssue false

Observation of Large Low Field Magnetoresistance in Ramp-Edge Tunneling Junctions Based on Doped Manganite Ferromagnetic Electrodes and A SrTiO3 Insulator

Published online by Cambridge University Press:  10 February 2011

C. Kwon
Affiliation:
Materials Science and Technology Division, Mail Stop K763 Los Alamos National Laboratory, Los Alamos, NM 87545
Q. X. Jia
Affiliation:
Materials Science and Technology Division, Mail Stop K763 Los Alamos National Laboratory, Los Alamos, NM 87545
Y. Fan
Affiliation:
Materials Science and Technology Division, Mail Stop K763 Los Alamos National Laboratory, Los Alamos, NM 87545
M. F. Hundley
Affiliation:
Materials Science and Technology Division, Mail Stop K763 Los Alamos National Laboratory, Los Alamos, NM 87545
D. W. Reagor
Affiliation:
Materials Science and Technology Division, Mail Stop K763 Los Alamos National Laboratory, Los Alamos, NM 87545
M. E. Hawley
Affiliation:
Materials Science and Technology Division, Mail Stop K763 Los Alamos National Laboratory, Los Alamos, NM 87545
D. E. Peterson
Affiliation:
Materials Science and Technology Division, Mail Stop K763 Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

We report the fabrication of ferromagnet-insulator-ferromagnet junction devices using a ramp-edge geometry based on (La0.7Sr0.3)MnO3 ferromagnetic electrodes and a SrTiO3 insulator. The multilayer thin films were deposited using pulsed laser deposition and the devices were patterned using photolithography and ion milling. As expected from the spin-dependent tunneling, the junction magnetoresistance depends on the relative orientation of the magnetization in the electrodes. The maximum junction magnetoresistance (JMR) of 30 % is observed below 300 Oe at low temperatures (T < 100 K).

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Moodera, J. S. and Kinder, L. R., J. App. Phys. 79, 4724 (1996).Google Scholar
[2] Juliere, M., Phys. Lett. 54A, 225 (1975).Google Scholar
[3] Hwang, H. Y., Cheong, S.-W., Ong, N. P., and Batlogg, B., Phys. Rev. Lett. 77, 2041 (1996).Google Scholar
[4] Park, J. H., Vescovo, E., Kim, H.-J., Kwon, C., Ramesh, R., and Venkatesan, T., Nature (1998).Google Scholar
[5] Sun, J. Z., Gallagher, W. J., Duncombe, P. R., Krusin-Elbaum, L., Altman, R. A., Gupta, A., Lu, Y., Gong, G. Q., and Xiao, G., Appl. Phys. Lett. 69, 3266 (1996);Google Scholar
Sun, J. Z., Krusin-Elbaum, L., Duncombe, P. R., Gupta, A., and Laibowitz, R. B., Appl. Phys. Lett. 70, 1769 (1997).Google Scholar
[6] Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y., Phys. Rev. B 51, 14103 (1995).Google Scholar
[7] Gupta, A., Gong, G. Q., Xiao, G., Duncombe, P. R., Lecoeur, P., Trouilloud, P., Wang, Y. Y., Dravid, V. P., and Sun, J. Z., Phys. Rev. B 54, R15629 (1996).Google Scholar