Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:24:03.269Z Has data issue: false hasContentIssue false

Observation of Film Growth Phenomena Using Micromachined Structures

Published online by Cambridge University Press:  10 February 2011

F. DiMeo Jr.
Affiliation:
Process Measurements Division, steves @nist.gov.frank.dimeo @ nist.gov
R. E. Cavicchi
Affiliation:
Process Measurements Division, steves @nist.gov.frank.dimeo @ nist.gov
S. Sernancik
Affiliation:
Process Measurements Division, steves @nist.gov.frank.dimeo @ nist.gov
J. S. Suchle
Affiliation:
Semiconductor Electronics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
N. H. Tea
Affiliation:
Semiconductor Electronics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
J. T. Kelliher
Affiliation:
Microelectronics Research Laboratory, Columbia, MD 21045
Get access

Abstract

A method of studying thin film growth and materials processing using micromachined Si-based structures is presented. The microsubstrate platforms (called “microhotplates”) allow temperature control during deposition, and in situ monitoring of the electrical properties of connected coatings. The efficiency of the approach is amplified when multiple. Independentlyoperated elements are used in array configurations. Illustrations here involve chemical vapor deposition of semiconducting oxides, but the methodology can be employed to investigate the growth of other classes of materials as well.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Madou, M., Fundamentals of Microfabrication (CRC Press, 1996).Google Scholar
2 See, for example, Proceedings of Transducers '95/Eurosensors IX (Foundation for Sensor and Actuator Technology, Stockholm, 1995).Google Scholar
3 Suehle, J. S., Cavicchi, R., Gaitan, M. and Semancik, S., IEEE Elec. Dev. Lett. 14, 118 (1993).Google Scholar
4 Commercial products and services are identified only to specify experimental procedure. Their mention in no way implies recommendation or endorsement by the National Institute of Standards and Technology.Google Scholar
5 Cavicchi, R. E., Suehle, J. S., Kreider, K. G., Shomaker, B. L., Small, J. A., and Gaitan, M., Appl. Phys. Lett. 66, 812 (1995).Google Scholar
6 Cavicchi, R. E., Semancik, S., Suehle, J. S. and Gaitan, M., Patent # 5,356,756.Google Scholar
7 DiMeo, F., Semancik, S., Cavicchi, R. E., Tea, N. H. and Suehle, J. S., Small, J. and Armstrong, J., to be published.Google Scholar
8 DiMeo, F., Semancik, S., Cavicchi, R. E., Suehle, J. S., Chaparala, P., and Tea, N. H., Mat. Res. Soc. Proc. 415, 231 (1996).Google Scholar
9 DiMeo, F., Semancik, S., Cavicchi, R. E., Suehle, J. S., Tea, N. H., Vaudin, M. D. and Kelliher, J. T., accepted in Mat. Res. Soc. Proc. 444 (1997).Google Scholar
10 Cavicchi, R. E.. Poirier, G. E., Suehle, J. S., Gaitan, M., Semancik, S. and Burgess., D. R. F., J. Vac. Sci. and Tech. A 12, 2549 (1994).Google Scholar
11 Cavicchi, R. E., Suehle, J. S., Kreider, K. G., Gaitan, M. and Chaparala, P., IEEE Elec. Dev. Lett. 16, 286 (1995).Google Scholar