Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:53:22.828Z Has data issue: false hasContentIssue false

Oblique-incidence Reflectivity Difference (OI-RD) and Leed Studies of Adsorption and Growth of Xe on Nb(110)

Published online by Cambridge University Press:  15 February 2011

P. Thomas
Affiliation:
Department of Physics, University of California, Davis, California 95616, USA
E. Nabighian
Affiliation:
Department of Physics, University of California, Davis, California 95616, USA
M.C. Bartelt
Affiliation:
Department of Chemistry and Materials Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
C.Y. Fong
Affiliation:
Department of Physics, University of California, Davis, California 95616, USA
X.D. Zhu
Affiliation:
Department of Physics, University of California, Davis, California 95616, USA
Get access

Abstract

We studied adsorption, growth and desorption of Xe on Nb(110) using an in-situ obliqueincidence reflectivity difference (OI-RD) technique and low energy electron diffraction (LEED) from 32 K to 100 K. The results show that Xe grows a (111)-oriented film after a transition layer is formed on Nb(110). The transition layer consists of three layers. The first two layers are disordered with Xe-Xe separation significantly larger than the bulk value. The third monolayer forms a close packed (111) structure on top of the tensile-strained double layer and serves as a template for subsequent homoepitaxy. The adsorption of the first and the second layers are zeroth order with sticking coefficient close to one. Growth of the Xe(111) film on the transition layer proceeds in a step flow mode from 54K to 40K. At 40K, an incomplete layer-by-layer growth is observed while below 35K the growth proceeds in a multilayer mode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

[1] For example, Thin Films: Heteroepitaxial Systems, Series on Directions on Condensed Matter Physics 15, eds. Liu, W.K. and Santos, M.B. (World Scientific, Singapore, 1999).Google Scholar
[2] The Chemical Physics of Solid Surfaces 8, eds., King, D.A. and Woodruff, D.P. (Elsevier, Amsterdam, 1997); J. Tersoff, A.W. Denier van der Gon, R.M. Tromp: Phys. Rev. Lett. 72, 266 (1994).Google Scholar
[3] Sakamoto, T., Sakamoto, K., Miki, K., Okumura, H., Yoshida, S., Tokumoto, H.: in Kinetics of Ordering and Growth at Surfaces, NATO ASI Series 239, ed. Lagally, M.G. (Plenum Press, New York, 1990), p. 274; J.E. Macdonald, A.A. Williams, R. van Silfhout, J.F. van der Veen, M.S. Finney, A.D. Johnson, C. Norris: ibid., p. 473.Google Scholar
[4] Whaley, G.J., Cohen, P.I.: Mat. Res. Soc. Symp. Proc. 160, 35 (1990); N. Kuze, H. Goto, S. Miya, S. Muramatsu, M. Matsui, I. Shibasaki: Mat. Res. Soc. Symp. Proc. 399, 165 (1996).Google Scholar
[5] Bauer, E., Poppa, H., Todd, G., Davis, P.R.: J. Appl. Phys. B 48, 3773 (1977); E. Bauer, J. H. van der Merve: Phys. Rev. B 33, 3657 (1986); E. Bauer: in Ref. 2, p. 46.Google Scholar
[6] Using a combination of LEED and the optical reflectivity difference as in-situ probe (see for example, , Nabighian, Zhu: Appl. Phys. Lett. 73, 2736 (1998)], we found that annealing a sputtered Nb(110) to 900 C for a few minutes is sufficient to produce a smooth surface. The details of ion erosion and thermal annealing of Nb(110) will be reported elsewhere.Google Scholar
[7] Wong, A., Zhu, X.D.: Appl. Phys. A 63, 1 (1996); X.D. Zhu, H.B. Lu, Guo-Zhen Yang, Zhi-Yuan Li, Ben-Yuan Gu, Dao-Zhong Zhang: Phys. Rev B 57, 2514 (1998); X.D. Zhu, Weidong Si, X.X. Xi, Qi Li, Q.D. Jiang, M.G. Medici: Appl. Phys. Lett. 74, 3540 (1999); X.D. Zhu, W. Si, X.X. Xi, Qidu Jiang: Appl. Phys. Lett. 78, 460 (2001).Google Scholar
[8] Nabighian, E., Bartelt, M.C., Zhu, X.D.: Phys. Rev. B 62, 1619 (2000).Google Scholar
[9] Zhu, X.D., unpublished.Google Scholar
[10] Merve, J.H. van der: in Chemistry and Physics of Solid Surfaces 5, eds., Vanselow, R. and Howe, R. (Springer-Verlag, Berlin, 1984), p. 365.Google Scholar
[11] Fong, C.Y., Zhu, X.D.: unpublished.Google Scholar
[12] Park, Ji-Yong, Kahng, S.-J., Ham, U. D., Kuk, Y., Miyake, K., Hata, K., Shigekawa, H.: Phys. Rev. B 60, 16934 (1999).Google Scholar
[13] Seguin, J.L, Suzanne, J., Bienfait, M., Dash, J.G., Venables, J.A.: Phys. Rev. Lett. 51, 122 (1983).Google Scholar