Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T18:07:22.728Z Has data issue: false hasContentIssue false

Numerical Processing of Cooling Curves to Obtain Growth Parameters During Eutectic Solidification

Published online by Cambridge University Press:  28 February 2012

M. Morua
Affiliation:
Departamento de Ingeniería Metalúrgica, Facultad de Química, UNAM, Edificio D Circuito de los Institutos s/n Cd. Universitaria Mexico D.F., Mexico.
E. Peña
Affiliation:
Departamento de Ingeniería Metalúrgica, Facultad de Química, UNAM, Edificio D Circuito de los Institutos s/n Cd. Universitaria Mexico D.F., Mexico.
R. Aparicio
Affiliation:
Cinvestav Querétaro Libramiento Norponiente 2000, Real de Juriquilla, 76230 Querétaro Qro. Mexico.
M. Ramirez-Argaez
Affiliation:
Departamento de Ingeniería Metalúrgica, Facultad de Química, UNAM, Edificio D Circuito de los Institutos s/n Cd. Universitaria Mexico D.F., Mexico.
C. Gonzalez-Rivera
Affiliation:
Departamento de Ingeniería Metalúrgica, Facultad de Química, UNAM, Edificio D Circuito de los Institutos s/n Cd. Universitaria Mexico D.F., Mexico.
Get access

Abstract

In this work a methodology to measure kinetic parameters to describe grain growth during equiaxed eutectic solidification is proposed. This methodology includes the numerical processing of two cooling curves and requires input data concerning the number of grains per unit volume. In addition, free grain growth before impingement and an exponential dependence of the grain growth rate on undercooling are assumed. The evolution of solid fraction of the sample as a function of time is obtained by applying the Fourier thermal analysis (FTA) method. Information collected is processed numerically in order to find numerical values for the pre-exponential and exponential parameters that characterize the grain growth kinetics as a function of undercooling. To validate this methodology a mechanistic model that simulates the cooling and solidification of eutectic Al-Si alloy in a sand mold is used. The results suggest that this methodology can be used to measure the kinetic parameters of equiaxed growth from the numerical processing of cooling curves and grain density data.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liu, B., Xu, Q., Jing, T., Shen, H. and Han, Z.. J. of Metals, 63, 4, 19,(2011).Google Scholar
2. Zhu, M.F., Hong, C.P. and Stefanescu, D.M.. Met. Mater. Trans B, 38B, 517,(2007).Google Scholar
3. Yao, X., Dargusch, M.S. and Dahle, A.K., J. Mater. Res., 23,9, 2312 (2008).Google Scholar
4. Zhang, H., Oikawa, K., Ohno, M. and Jönsson, Pär G.. ISIJ International, 50 ,12, 1724, (2010).Google Scholar
5. Dioszegi, A. and Svensson, I. L Int.J. of Cast Metals Research, 18, 1, 41(2005).Google Scholar
6. Degand, C., Stefanescu, D.M. and Laslaz, G. in: “Solidification Science and Processing” , Ohnaka, I. and Stefanescu, D.M. eds., TMS, Warrendale Pa., 55 (1996).Google Scholar
7. González-Rivera, C., Cruz, H. García, M. A. Juárez-Islas, H. J.. J. of Mater. Eng. and Performance 8,1,103,(1999).Google Scholar
8. Kapturkiewicz, W., Burbielko, A., and Lopez, H.F., AFS Trans., 101, 505, (1993).Google Scholar
9. Barlow, J.O. and Stefanescu, D.M., AFS Trans., 105, 339, (1997).Google Scholar
10. Fras, E., Kapturkiewicz, W., Burbielko, A., and Lopez, H.F., Metall. Mater. Trans. B, 28B, 115, (1997).Google Scholar
11. Emadi, D. and Whiting, L., AFS Trans., 110, 285, (2002)Google Scholar