Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:56:51.703Z Has data issue: false hasContentIssue false

Numerical Modeling of Radiative Properties of Patterned Wafers with Sub-Micron Features

Published online by Cambridge University Press:  10 February 2011

Jeffrey B. Hoppert
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department Tufts University, Medford, MA 02155
Ioannis N. Miaoulis
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department Tufts University, Medford, MA 02155
Peter Y. Wong
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department Tufts University, Medford, MA 02155
Get access

Abstract

Decreasing feature sizes in the microelectronics industry have led to numerous processing problems with thin film semiconductors. Non-uniform temperature distributions, due to microscale radiation effects on the radiative properties of the thin film structures, are responsible for wafer defects. These microscale radiation effects become significant as pattern spacing and film thicknesses reach the same order of magnitude as the wavelengths of the heat-source radiation. A numerical model has been developed in which normal emissivities for patterned wafers are calculated, using an effective index of refraction technique. In this study various patterns at temperatures critical to the thermal processing are examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lord, H.A., IEEE Trans. Semicond. Manuf., 1 (3), 105 (1988).Google Scholar
2. Deaton, R. and Massoud, H.Z., IEEE Trans. Semicond. Manuf., 5 (4), 347 (1992).Google Scholar
3. Öztürk, M.C. et al. , IEEE Trans. Semicond. Manuf., 4 (2), 155 (1991).Google Scholar
4. Pettibone, D. W., Suarez, J. R., and Gat, A., Rapid Thermal Processing, edited by Sedgwick, T. O., Seidel, T. E., and Tsaur, B.-Y., (Mat. Res. Soc. Proc. 52, Pittsburgh, PA, 1985) p. 209.Google Scholar
5. Nulman, J. et al. , Rapid Thermal Annealing/Chemical Vapor Deposition and Integrated Processing, edited by Hodul, D. et al. , (Mat. Res. Soc. Proc. 146,Pittsburgh, PA, 1989) p. 461.Google Scholar
6. Apte, P.P. and Saraswat, K.C., IEEE Trans. Semicond. Manuf., 5 (3), 180 (1992).Google Scholar
7. Pelletier, J. J. and Winter, T. E., Rapid Thermal Annealing/Chemical Vapor Deposition and Integmated Processing, edited by Hodul, D. et al. (Mat. Res. Soc. Proc. 146, Pittsburgh, PA, 1989) p. 467.Google Scholar
8. Sorrell, F.Y., Harris, J.A., and Gyurcsik, R.S., IEEE Trans. Semicond. Manuf., 3 (4), 183 (1990).Google Scholar
9. Samganeria, M. K. and Öztürk, M. C., Rapid Thermal and Integrated Processing II edited by Gelpey, J. C. et al. , (Mat. Res. Soc. Proc. 303, Pittsburgh, PA, 1993) p. 19 Google Scholar
10. Wong, P. Y. and Miaoulis, I. N., Rapid Thermal and Integrated Processing II. edited by Gelpey, J. C. et al. (Mat. Res. Soc. Proc. 303, Pittsburgh, PA, 1993) p. 217 Google Scholar
11. Vandenabeele, P., Maex, K., and De Keersmaecker, R., Rapid Thermal Annealing/Chemical Vapor Deposition and Integrated Processing, edited by Hodul, D. et al. (Mat. Res. Soc. Proc. 146, Pittsburgh, PA, 1989) p. 149.Google Scholar
12. Kakochke, and Bußmann, , Ranid Thermal AnnealinQ/Chemical Vapor Deposition and Integrated Processing, edited by Hodul, D. et al. (Mat. Res. Soc. Proc. 146, Pittsburgh, PA, 1989) p. 473.Google Scholar
13. Shieh, T.-J. and Carter, R. L., IEEE Trans. Electron Dev., 36 (1), 19 (1989)Google Scholar
14. Vandenabeele, P. and Maex, K., Rapid Thermal and Integrated Processing, edited by Gelpey, J. C. et al. (Mat. Res. Soc. Proc. 224, Pittsburgh, PA, 1993) p. 185 Google Scholar
15. Lin, Y.-T. et al. , Rapid Thermal and Integmated Processing II. edited by Gelpey, J. C. et al. (Mat. Res. Soc. Proc. 303, Pittsburgh, PA, 1993) p. 231 Google Scholar
16. Renken, W., First International Rapid Thermal Processing Conference, edited by Fair, R. B. and Lojek, B., (RTP, Scottsdale, AZ, 1993) p. 262 Google Scholar
17. Eichhammer, W., Vandenabeele, P., and Maex, K., Rapid Thermal and Integrated Processing. edited by Gelpey, J. C. et al. (Mat. Res. Soc. Proc. 224, Pittsburgh, PA, 1993) p. 487 Google Scholar
18. Feil, B., Drew, M., and Moench, J., First International Rapid Thermal Processing Conference, edited by Fair, R. B. and Lojek, B., (RTP, Scottsdale, AZ, 1993) p. 114 Google Scholar
19. Spinella, C. et al. , First International Rapid Thermal Processing Conference, edited by Fair, R. B. and Lojek, B., (RTP, Scottsdale, AZ, 1993) p. 141 Google Scholar
20. Thakur, R. P. S. et al. , Rapid Thermal and Integrated Processing II. edited by Gelpey, J. C. et al. (Mat. Res. Soc. Proc. 303, Pittsburgh, PA, 1993) p. 189 Google Scholar
21. Stephens, A. E., First International Rapid Thermal Processing Conference, edited by Fair, R. B. and Lojek, B., (RTP, Scottsdale, AZ, 1993) p. 94 Google Scholar
22. Thakur, R. P. S. and Singh, R. S., Appl. Phys. Lett., 64 (3), 327 (1994)Google Scholar
23. Hu, S. M., J. Appl. Phys., 70 (6), R53 (1991)Google Scholar
24. Gaylord, T. K. et al. , Applied Optics, 26 (15), 3123 (1987).Google Scholar
25. Heavens, O. S., Optical Properties Of Thin Solid Films, pp. 4695, Buttersworth, Washington D.C. (1955)Google Scholar