Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T07:39:41.777Z Has data issue: false hasContentIssue false

Numerical Derivative Analysis of Load-Displacement Curves in Depth-Sensing Indentation

Published online by Cambridge University Press:  01 February 2011

Tom Juliano
Affiliation:
Department of Materials Science and Engineering Drexel University, Philadelphia, PA 19104, USA
Vladislav Domnich
Affiliation:
Department of Materials Science and Engineering Drexel University, Philadelphia, PA 19104, USA
Tom Buchheit
Affiliation:
Department of Microsystems, Materials, Tribology and Technology - Sandia National Laboratories, Albuquerque, NM 87185, USA
Yury Gogotsi
Affiliation:
Department of Materials Science and Engineering Drexel University, Philadelphia, PA 19104, USA
Get access

Abstract

The use of load-displacement derivative behavior and power-law curve fitting is applied to find the location of events for a number of different materials during depth-sensing indentation. Load-displacement curves for Berkovich indentations on fused silica, fullerene thin film on sapphire, CdTe thin film on silicon, single crystal silicon, carbide derived carbon, and a polymethylmethacrylate/hydroxyapatite (PMMA/HA) particle composite are examined. The analysis is applied to quantify the location of different events that occur during material loading and unloading.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).Google Scholar
2. Saha, R. and Nix, W. D., Acta Mater. 50, 23 (2002).Google Scholar
3. Nowak, R., Sekino, T., and Niihara, K., Acta Mater. 47, 4329 (1999).Google Scholar
4. Weppelmann, E. R., Field, J. S., and Swain, M. V., J. Mater. Res. 8, 830 (1993).Google Scholar
5. Bradby, J. E., Williams, J. S., Wong-Leung, J., et al., Appl. Phys. Lett. 77, 3749 (2000).Google Scholar
6. Domnich, V., Gogotsi, Y., and Dub, S., Appl. Phys. Lett. 76, 2214 (2000).Google Scholar
7. Gogotsi, Y. G., Domnich, V., Dub, S. N., et al., J. Mater. Res. 15, 871 (2000).Google Scholar
8. Hainsworth, S. V., Chandler, H. W., and Page, T. F., J. Mater. Res. 11, 1987 (1996).Google Scholar
9. Sakai, M., Shimizu, S., and Ishikawa, T., J. Mater. Res. 14, 1471 (1999).Google Scholar
10. Malzbender, J. and de With, G., Surf. and Coatings Tech. 127, 266 (2000).Google Scholar
11. McGurk, M. R. and Page, T. F., J. Mater. Res. 14, 2283 (1999).Google Scholar
12. Hainsworth, S. V., McGurk, M. R., and Page, T. F., Surf. and Coatings Tech. 102, 97 (1998).Google Scholar
13. Malzbender, J. and de With, G., Surf. and Coating Tech. 137, 72 (2001).Google Scholar
14. Pharr, G. M. and Bolshakov, A., J. Mater. Res. 17, 2660 (2002).Google Scholar
15. Richter, A., Ries, R., Smith, R., et al., Diamond and Related Mat. 9, 170 (2000).Google Scholar
16. Juliano, T., Gogotsi, Y., and Domnich, V., J. Mater. Res. 18, 1192 (2003).Google Scholar
17. Domnich, V. and Gogotsi, Y., Rev. Adv. Mater. Sci. 3, 1 (2002).Google Scholar
18. Gogotsi, Y., Welz, S., Ersoy, D., et al., Nature 411, 283 (2001).Google Scholar
19. Kumar, R. and Wang, M., Mat. Sci. and Eng. A 338, 230 (2002).Google Scholar