Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:54:14.563Z Has data issue: false hasContentIssue false

Numerical 3D-Simulation of Micromorph Silicon Thin Film Solar Cells

Published online by Cambridge University Press:  27 June 2011

Stefan Geißendörfer
Affiliation:
NEXT ENERGY ∙ EWE-Forschungszentrum für Energietechnologie an der Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany
Karsten von Maydell
Affiliation:
NEXT ENERGY ∙ EWE-Forschungszentrum für Energietechnologie an der Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany
Carsten Agert
Affiliation:
NEXT ENERGY ∙ EWE-Forschungszentrum für Energietechnologie an der Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany
Get access

Abstract

In this contribution 1, 2 and 3-dimensional simulations of micromorph silicon solar cells are presented. In order to simulate solar cells with rough interfaces, the surface topographies were measured via atomic force microscopy (AFM) and transferred into the commercial software Sentaurus TCAD (Synopsys). The model of the structure includes layer thicknesses and optoelectronic parameters like complex refractive index and defect structure. Results of the space resolved optical generation rates by using of the optical solver Raytracer are presented. The space resolved optical generation rate inside the semiconductor layers depends on the structure of the transparent conductive oxides (TCO) interface. In this contribution the influence of different optical generation rates on the electrical characteristics of the solar cell device are investigated. Furthermore, the optical and electrical results of the 1D, 2D and 3D structures, which have equal layer thicknesses and optoelectronic parameters, are compared.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Čampa, A., Isabella, O., van Erven, R., Peeters, P., Borg, H., Krč, J., Topič, M. and Zeman, M., Progress in Photovoltaics: Research and Applications 18, 160167 (2010).10.1002/pip.940Google Scholar
2. Pflaum, C. et al. ., in Proceedings of the 24th European Photovoltaic Solar Energy Conference, 2310-2312, Hamburg (2009).Google Scholar
3. Lacombe, J. et al. ., in Proceedings of the 35th IEEE Photovoltaic Specialist Conference, 15351539, Hawaii (2010).Google Scholar
4. Geißendörfer, S. et al. ., in Proceedings of the 25th European Photovoltaic Solar Energy Conference, 3133, Valencia (2010).Google Scholar
5. Kilper, T. et al. ., in Proceedings of the 20th European Photovoltaic Solar Energy Conference, 1544-1547, Barcelona (2005).Google Scholar
6. Rech, B., PhD. Thesis, Forschungszentrum Jülich, Jül-3427, 1997.Google Scholar
7. Willemen, J.A., PhD. Thesis, Delft University of Technology, 1998.Google Scholar
8. Sturiale, A., Li, Hongbo T., Rath, J. K., Schropp, R. E. I., and Rubinelli, F. A., J. Appl. Phys. 106, 14502 (2009).10.1063/1.3151691Google Scholar