Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-06T12:51:05.720Z Has data issue: false hasContentIssue false

Nucleation Mechanism of Microcrystalline Silicon Studied by Real Time Spectroscopic Ellipsometry and Infrared Spectroscopy

Published online by Cambridge University Press:  17 March 2011

Hiroyuki Fujiwara
Affiliation:
Thin Film Silicon Solar Cells Super Laboratory, Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
Yasutake Toyoshima
Affiliation:
Thin Film Silicon Solar Cells Super Laboratory, Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
Michio Kondo
Affiliation:
Thin Film Silicon Solar Cells Super Laboratory, Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
Akihisa Matsuda
Affiliation:
Thin Film Silicon Solar Cells Super Laboratory, Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
Get access

Abstract

We have characterized a-Si:H initial layers for μc-Si:H nucleation by real time spectroscopic ellipsometry (SE) and infrared attenuated total reflection spectroscopy (ATR) to investigate the μc-Si:H formation mechanism. By performing Ar plasma treatment of a-Si:H layers, we confirmed a presence of a 2 monolayer thick sub-surface in a-Si:H layers. In the a-Si:H sub-surface that leads to the μc-Si:H nucleation, an important peak at ∼1937 cm−1 assigned to the SiHn complex was found in the ATR spectra. From H2 plasma treatment experiments, we proposed that this SiHn complex is formed by H insertion into strained Si-Si bonds. The SiHn complex formed in the a-Si:H sub-surface showed a clear relationship with the μc-Si:H nucleation. From these results, we conclude that the μc-Si:H nucleation occurs by the formation of the chemically active and flexible SiHn complexes in the 2 monolayer thick a-Si:H sub-surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Keppner, H., Meier, J., Torres, P., Fischer, D., Shah, A., Appl. Phys. A 69, 169 (1999).Google Scholar
2. Matsuda, A., Thin Solid Films, 337, 1 (1999).Google Scholar
3. Tsai, C. C., Anderson, G. B., Thompson, R., Wacker, B., J. Non-Cryst. Solids 114, 151 (1989).Google Scholar
4. Guha, S., Yang, J., Williamson, D. L., Lubianiker, Y., Cohen, J. D., and Mahan, A. H., Appl. Phys. Lett. 74, 1860 (1999).Google Scholar
5. Parsons, G. N., Boland, J. J., and Tsang, J. C., Jpn. J. Appl. Phys. 31, 1943 (1992).Google Scholar
6. Okamoto, S., Hishikawa, Y., and Tsuda, S., Jpn. J. Appl. Phys. 35, 26 (1996).Google Scholar
7. Kroll, U., Meier, J., Shah, A., Mikhailov, S., and Weber, J., J. Appl. Phys. 80, 4971 (1996).Google Scholar
8. Tsu, D. V., Chao, B. S., Ovshinsky, S. R., Guha, S., Yang, J., Appl. Phys. Lett. 71, 1317 (1997).Google Scholar
9. Futako, W., Yoshino, K., Fortmann, C. M., and Shimizu, I., J. Appl. Phys. 85, 812 (1999).Google Scholar
10. Nakamura, K., Yoshino, K., Takeoka, S., Shimizu, I., Jpn. J. Appl. Phys. 34, 442 (1995).Google Scholar
11. Koh, J., Lee, Y., Fujiwara, H., Wronski, C. R., Collins, R. W., Appl. Phys. Lett. 73,1526 (1998).Google Scholar
12. Fujiwara, H., Toyoshima, Y., Kondo, M., and Matsuda, A., J. Non-Cryst. Solids: in press.Google Scholar
13. Marra, D. C., Edelberg, E. A., Naone, R. L., Aydil, E. S., J. Vac. Sci. Technol. A 16, 3199 (1998).Google Scholar
14. Fujiwara, H., Toyoshima, Y., Kondo, M., and Matsuda, A., Phys. Rev. B 60, 13598 (1999).Google Scholar
15. Chabal, Y. J., Higashi, G. S., and Raghavachari, K., J. Vac. Sci. Technolo. A 7, 2104 (1989).Google Scholar
16. Chabal, Y. J., Higashi, G. S., and Christman, S. B., Phys. Rev. B 28, 4472 (1983).Google Scholar
17. Niwano, M., Terashi, M., Kuge, J., Surf. Sci. 420, 6 (1999).Google Scholar
18. Niwano, M., Surf. Sci. 427, 199 (1999).Google Scholar
19. Lee, J., Rovira, P. I., An, I., and Collins, R. W., Rev. Sci. Instrum. 69, 1800 (1998).Google Scholar
20. Matsuda, A., Nomoto, K., Takeuchi, Y., Suzuki, A., Yuuki, A., Perrin, J., Surf. Sci, 277, 50 (1990).Google Scholar
21. Lin, G. H., Doyle, J. R., He, M., and Gallagher, A., J. Appl. Phys. 64, 188 (1988).Google Scholar
22. Collins, R. W., in: Fritzsche, H. (Ed.), Amorphous Silicon and Related Materials, World Scientific, Singapore, 1988, p.1031.Google Scholar
23. Langford, A. A., Fleet, M. L., Nelson, B. P., Lanford, W. A., and Maley, N., Phys. Rev. B 45, 13367 (1992).Google Scholar
24. Fujiwara, H., Koh, J., Lee, Y., Wronski, C. R., Collins, R. W., J. Appl. Phys. 84, 2278 (1998).Google Scholar
25. Nielsen, B. B., and Grimmeiss, H. G., Phys. Rev. B 40, 12403 (1989).Google Scholar
26. Walle, C. G. Van de, Denteneer, P. J. H., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 39, 10791 (1989).Google Scholar
27. Shi, T. S., Sahu, S. N., Oehrlein, G. S., Hiraki, A., Corbett, J., Phys. Stat. Sol. A 74, 329 (1982).Google Scholar
28. Knights, J. C., Schmitt, J. P. M., Perrin, J., Guelachvili, G., J. Chem. Phys. 76, 3414 (1982).Google Scholar
29. Holm, B., Nielsen, K. B., and Nielsen, B. B., Phys. Rev. Lett. 66, 2360 (1991).Google Scholar
30. Walle, C. G. Van de, J. Vac. Sci. Technol. A 16, 1767 (1998).Google Scholar
31. Boland, J. J., Surf. Sci. 244, 1 (1999).Google Scholar