Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:17:41.408Z Has data issue: false hasContentIssue false

Nucleation and Growth of Uniform m-ZRO2

Published online by Cambridge University Press:  28 February 2011

A. Bleier
Affiliation:
Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, TN 37831
R. M. Cannon
Affiliation:
Lawrence Berkeley Laboratory, Hearst Mining Building, University of California, Berkeley, CA 94720
Get access

Abstract

Hydrothermal treatment of zirconyl salt solutions produces uniform m-ZrO2 powder on the order of 80 nm. This powder is porous, has a 3-nm crystallite size, and exhibits an unusually high degree of crystallographic alignment within particles. The generation of this powder occurs via a complex process involving nucleation, growth, and controlled agglomeration of primary particles. Particle formation, crystallographic alignment and particulate uniformity are explained in terms of solution reactions and colloidal behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bleier, A. and Cannon, R. M., “Synthesis and Characterization of Uniform Zirconia”, In preparation for the Am. Ceram. Soc.; Am. Ceram. Soc. Bull. 61 (3), 336 (1982).Google Scholar
2. Bleier, A., “Synthesis of ZrO2-Based Powders Using Solution Techniques”, Presented at the MRS Annual Meeting, Boston, MA, 1982, Paper No. N3.2; 8, 845 (1963); H. Bilinski, M. Branica, and L. G. Sillen, Acta Chem. Scand. 20, 853 (1966); E. Matijević, K. G. Mathai, and M. Kerker, J. phys. Chem. 66, 1799 (1962); Stability Constants of Metal Ion Complexes, Spec. Publ. Nos. 17 and 25. edited by L. G. Sillen and A. E. Martell (Chem. Soc., London, 1964 and 1971), pp. 45–46 and 18, respectively.Google Scholar
3. Bleier, A., in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by Hench, L. L. and Ulrich, D. R. (John Wiley & Sons Inc., New York, 1984), p. 391.Google Scholar
4. Overbeek, J. Th. G., in Colloid Science, edited by Kruyt, H. R. (Elsevier Publishing Co., Amsterdam, 1952), pp. 6368.Google Scholar
5. Matijević, E., Langmuir 2, 12 (1986); Acc. Chem. Res. 14, 22 (1981); Pure Appl. Chem. 50, 1193 (1978).Google Scholar
6. Rozier, E., “Effect of Grain Size on Sintering Behavior, Phase Transformation, and Toughness in Unstabilized Zirconia”, B.Sc. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1982, 57 p.Google Scholar
7. Cannon, R. M. and Bleier, A., “Sintering of Ultrafine ZrO2 Powder”, In preparation for the Am. Ceram. Soc.; Am. Ceram. Soc. Bull. 61 (8), 811 (1982).Google Scholar
8. Hasz, W. C. and Bleier, A., Am. Ceram. Soc. Bull. 62 (3), 376 (1983).Google Scholar
9. (a) Bleier, A. and Angelini, P., in Abstracts: 59t-T Colloid and Surface Science Symposium (Am. Chem. Soc., Potsdam, NY, 1985), Paper No. 346; (b) S. Spooner, P. Angelini, P. F. Becher, A. Bleier, W. D. Bond, and J. Brynestad, in Extended Abstracts: American Ceramic Society, 87th Annual Meeting (Am. Ceram. Soc., Columbus, OH, 1985), p. 3.Google Scholar
10. Henry, D. C., Proc. Roy. Soc. A133, 106 (1931).Google Scholar
11. (a) Bleier, A., in Advances in Materials Characterization, Material Science Research, Vol.15, edited by Rossington, D. R., Condrate, R. A., and Snyder, R. L. (Plenum Pr., New York, 1983), p. 499;(b) W. C. Hasz and A. Bleier, in Advances in Materials Characterization II, Materials Science Research, Vol. 19, edited by R. E; Snyder, R. A. Condrate, Sr., and P. F. Johnson (Plenum Pr. New York, 1985), p. 189.Google Scholar
12. Mandel, F. S. and Spencer, H. G., J. Colloid Interface Sci. 77, 57 (1980); A. E. Regazzoni, M. A. Blesa, and A. J. G. Marato,-T. Colloid Interface Sci. 91, 560 (1983); S. K. Milonjic, Z. E. Ilic, and M. M. Kopecni, Colloid and Surfaces 6, 167 (1983).Google Scholar
13. (a) Mer, V. K. La and Barnes, M. D., J. Colloid Sci. 1, 71 (1946); (b) V. K. La Mer and A. S. Kenyon, ibidem. 2, 257 (1947); (c) V. K. La Mer and R. H. Dinegar, J. Am. Chem. 72, 4847 (1950).Google Scholar
14. Clearfield, A., Rev. Pure Appl. Chem. 14, 91 (1964).Google Scholar
15. Beckhart, G. H., “Zirconium Dioxide Synthesis”, UROP Report, Massachusetts Institute of Technology, Cambridge, MA, May 1981, 20 p.Google Scholar
16. Blumenthal, W. B., The Chemical Behavior of Zirconium (D. Van Nostrand Co., Inc., Princeton, 1958), p. 240.Google Scholar
17. Matijević, E., Watanabe, A., and Kerker, M., Kolloid, Z. Z. Polym. 235, 1200 (1969).Google Scholar
18. Fryer, J. R., Hutchinson, J. L., and Paterson, R., J. Colloid Interface Sci. 34, 238 (1970).CrossRefGoogle Scholar
19. (a) Hiemenz, P. C., Principles of Colloid and Surface Chemistry, 2nd ed. (Marcel Dekker, Inc, New York, 1986), 815 p.;(b) R. D. Vold and M. J. Vold, Colloid and Interface Chemistry (Addison-Wesley, Reading, MA, 1983), 694 p.; (c) U. Stern, Z. Elektrochem. 30, 508 (1924).Google Scholar
20. Hogg, R., Healy, T. W., and Fuerstenau, D. W., Trans. Faraday Soc. 62, 1638 (1966).CrossRefGoogle Scholar
21. Israelachvili, J. N., Intermolecular and Surface Forces (Academic Pr. London, 1985), 296 p.Google Scholar
22. James, R. O. and Parks, G. A., in Surface and Colloid Science, Vol.12 edited by Matijević, E. (Plenum Pr., New York, 1982), p. 119.Google Scholar
23. (a) van der Woude, J. H. A., de Bruyn, P. L., and Pieters, J., Colloid and Surfaces 9, 173 (1984); (b) J. H. A. van der Woude and P. L. de Bruyn, Colloids and Surfaces 12, 179 (1984).Google Scholar
24. (a) Edelson, L. H., Gaugler, K., and Glaeser, A. M., Am. Ceram. Soc. Bull. 65, 504 (1986); (b) D. G. Pickles and E. Lilley, J. Am. Ceram. Soc. 6F(9), C-222 (1985); (c) E. Lilley and D. G. Pickles, in Extended Abstr�American Ceramic Society, 88th Annual Meeting (Am. Ceram. Soc., Columbus, OH, 1986), p. 60; Am. Ceram. Soc. Bull. 65, 502 (1986).Google Scholar