Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:05:18.507Z Has data issue: false hasContentIssue false

Nucleation and Growth of CVD Si Thin Films: AFM, SE and Tem Analysis

Published online by Cambridge University Press:  21 February 2011

W. M. Paulson
Affiliation:
Motorola, 3501 Ed Bluestein Boulevard, Austin, TX 78721
R. I. Hegde
Affiliation:
Motorola, 3501 Ed Bluestein Boulevard, Austin, TX 78721
B. B. Doris
Affiliation:
Motorola, 3501 Ed Bluestein Boulevard, Austin, TX 78721
V. Kaushik
Affiliation:
Motorola, 3501 Ed Bluestein Boulevard, Austin, TX 78721
P. J. Tobin
Affiliation:
Motorola, 3501 Ed Bluestein Boulevard, Austin, TX 78721
J. Fitch
Affiliation:
Motorola, 3501 Ed Bluestein Boulevard, Austin, TX 78721
W. A. McGahan
Affiliation:
J.A. Woollam Co., 650 J Street, Lincoln, NE 68508
J. A. Woollam
Affiliation:
J.A. Woollam Co., 650 J Street, Lincoln, NE 68508
Get access

Abstract

The nucleation and growth of in situ doped, LPCVD silicon films was analyzed using atomic force microscopy, variable-angle spectroscopie ellipsometry, and transmission electron microscopy. The RMS surface roughness initially increases from 0.5 to 5.7 nm with increasing deposition times and then rapidly decreases to 0.5 nm for longer times. Ellipsometry data was modeled using two layers where the top layer consists of a mixture of amorphous Si plus voids and the bottom layer is a continuous amorphous Si layer. Cross-section TEM reveals the nuclei size and structure for these silicon films and confirms the results of the other techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yasutake, M., Wakiyama, S. and Kato, Y., J. Vac. Sci. Technol. B12, 1572 (1994).Google Scholar
2. Vatel, O., Andre, E., Chollet, F., Dumas, P. and Salvan, F., J. Vac. Sci. Technol. B12 2037 (1994).Google Scholar
3. Westra, K. L., Mitchell, A. W. and Thomson, D. J., J. Appl. Phys. 74, 3608 (1993).Google Scholar
4. Irene, E. A., Thin Solid Films 233, 96 (1993).Google Scholar
5. Woollam, J. A. and Snyder, P. G., “Variable Angle Spectroscopie Ellipsometry” in Encyclopedia of Materials Characterization, Butterworth-Heinimann Publishers, Boston, p401, 1992.Google Scholar
6. An, Ilsin, Li, Y. M., Wronski, C. R., Nguyen, H. V. and Collins, R. W., Appl. Phys. Lett 59, 2543 (1991).Google Scholar
7. An, Ilsin, Nguyen, H. V., Nguyen, N. V. and Collins, R. W., J. Vac. Sci. Technol. A 9, 632 (1991).Google Scholar
8. Aspnes, D. E. and Theeten, J. B. and Hottier, F., Phys. Rev. B20, 3292 (1979).Google Scholar
9. Snyder, P. G., Xiong, Yi-M., Woollam, J. A., Krosche, E. R. and Strausser, Y., Surface and Interface Analysis 18, 113 (1992).Google Scholar
10. Prater, C. B. and Stausser, Y. E., in InsL Phys. Conf Proceedings No. 135, Chapter 2, p. 6972, IOP Publishing, 1993.Google Scholar
11. Zhong, Q., Innis, D., Kjoller, K. and Elings, V. B., Surface Science Letters 290, L688 (1993).Google Scholar
12. Paulson, W. M., Breaux, L. H., Hegde, R. I. and Tobin, P. J., in Diagnostic Techniques for Semiconductor Materials Processing, ed. by Glembocki, O. J., Pang, S.W., Poliak, F. H., Crean, G. M. and Larrabee, G. (Mat. Res. Soc. Symp. Proc. V 324, Pittsburgh PA, 1994) pp 397402.Google Scholar
13. Hendriks, M. and Mavero, C., J. Electrochem. Soc., 138, 1466 (1991).Google Scholar
14. Lin, H. C., et. al., J. Electrochem. Soc., 141, 2559 (1994).Google Scholar
15. Voutsas, A. T. and Hatalis, M. K., J. Electrochem. Soc. 139, 2659 (1992).Google Scholar