Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:38:28.138Z Has data issue: false hasContentIssue false

Nucleation and growth of CdS nanoparticles observed by ultrafast SAXS

Published online by Cambridge University Press:  02 May 2013

A. Schiener
Affiliation:
Chair for Crystallography and Structural Physics, University of Erlangen-Nürnberg, Staudtstraße 3, D-91034 Erlangen, Germany
T. Wlochowitz
Affiliation:
Chair for Crystallography and Structural Physics, University of Erlangen-Nürnberg, Staudtstraße 3, D-91034 Erlangen, Germany
S. Gerth
Affiliation:
Chair for Crystallography and Structural Physics, University of Erlangen-Nürnberg, Staudtstraße 3, D-91034 Erlangen, Germany
T. Unruh
Affiliation:
Chair for Crystallography and Structural Physics, University of Erlangen-Nürnberg, Staudtstraße 3, D-91034 Erlangen, Germany
A. Rempel
Affiliation:
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg, Russia
H. Amenitsch
Affiliation:
Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, A-8042 Graz, Austria
A. Magerl
Affiliation:
Chair for Crystallography and Structural Physics, University of Erlangen-Nürnberg, Staudtstraße 3, D-91034 Erlangen, Germany
Get access

Abstract

Aqueous solutions containing Cd2+ and S2- ions have been brought together in a T-mixer, and the formation of CdS nanoparticles has been monitored by ultrafast X-ray small angle scattering down to 0.2 ms. While no particle formation is observed for a laminar flow, their growth can be followed in-situ for conditions of turbulent flow.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, L., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S., Farokhzad, O.C., Clin. Pharmacol. Ther. 83 (2008) 761769.CrossRefGoogle Scholar
Salata, O.V., J. Nanobiotechnology 2, 3 (2004).CrossRefGoogle Scholar
Sounart, T. L., Safier, P. A., Voigt, J. A., Hoyt, J., Tallant, D. R., Matzke, C. M., Michalske, T. A., Lab Chip 7 (2007) 908915.CrossRefGoogle Scholar
Schmidt, W., Bussian, P., Lindén, M., Amenitsch, H., Agren, P., Tiemann, M., Schüth, F., J. Am. Chem. Soc. 132 (2010) 68226826.CrossRefGoogle Scholar
Whang, W., Germanenko, I., El-Shall, M. S., Chem. Mater. 14 (2002) 30283033.CrossRefGoogle Scholar
Kaito, C., Fujita, K, Shiojiri, M., J. Appl. Phys. 47 (1976) 51615166.CrossRefGoogle Scholar
Harruff, B.A., Bunker, C.E., Langmuir 19 (2003) 893897.CrossRefGoogle Scholar
Sathish, M., Viswanathan, B., Viswanath, R.P., Int. J. Hydrogen Energy 31 (2006) 891898.CrossRefGoogle Scholar
Shen, S., Guo, L., Mater. Res. Bull. 43 (2008) 437446.CrossRefGoogle Scholar
Singh, V., Sharma, P.K., Chauhan, P., Materials Characterization 62 (2011) 4352.CrossRefGoogle Scholar
Kozhevnikova, N.S., Vorokh, A.S., Rempel, A.A., Russian Journal of General Chemistry 80 (2010) 391394.CrossRefGoogle Scholar
Amenitsch, H., Rappolt, M., Kriechbaum, M., Mio, H., Laggner, P., Bernstoff, S., Synchrotron Radiat, J.. 5 (1998), 506508.CrossRefGoogle Scholar
Hung, L.H., Choi, K. M., Tseng, W.Y., Tan, Y.C., Shea, K. J., Lee, A.P., Lab chip 6 (2006) 174178.CrossRefGoogle Scholar
Ilavsky, J., J. Appl. Cryst. 45 (2012) 324328.CrossRefGoogle Scholar
Ilavsky, J., Jemian, P.R., J., Appl. Cryst. 42 (2009) 347353.CrossRefGoogle Scholar
Sugimoto, T., Dirige, G. E., Muramatsu, A., J. Colloid and Interf. Science, 182 (1996) 444456.CrossRefGoogle Scholar
Haberkorn, H., Franke, D., Frechen, T., Goesele, W., Rieger, J., J. Colloid and Interf. Science 259 (2003) 112126.CrossRefGoogle Scholar
Schwarz, H.C., Schwertfirm, F., Manhart, M., Schmid, H.-J., Peukert, W., Chemical Engineering Science 61 (2006) 167181.CrossRefGoogle Scholar